Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Björn Gebhard"'
Autor:
József J. Kolumbán, Björn Gebhard
We examine the two-dimensional Euler equations including the local energy (in)equality as a differential inclusion and show that the associated relaxation essentially reduces to the known relaxation for the Euler equations considered without local en
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c6a1bf68826012e7908b603a62fd4450
http://arxiv.org/abs/2109.14495
http://arxiv.org/abs/2109.14495
Autor:
József J. Kolumbán, Björn Gebhard
We consider the evolution of two incompressible fluids with homogeneous densities $\rho_
Comment: 39 pages
Comment: 39 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7f5380279c02aa2bf92122af596ba994
http://arxiv.org/abs/2008.08853
http://arxiv.org/abs/2008.08853
Publikováno v:
Archive for Rational Mechanics and Analysis
In this article we consider the inhomogeneous incompressible Euler equations describing two fluids with different constant densities under the influence of gravity as a differential inclusion. By considering the relaxation of the constitutive laws we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d4bad4851bc980d4528e7124d7297dba
http://arxiv.org/abs/2002.08843
http://arxiv.org/abs/2002.08843
We address the existence of stationary solutions of the Vlasov-Poisson system on a domain $\Omega\subset\mathbb{R}^3$ describing a high-temperature plasma which due to the influence of an external magnetic field is spatially confined to a subregion o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::da7b33c373fbc919fd2fadaabfce0a2e
Autor:
Björn Gebhard
Publikováno v:
Communications on Pure & Applied Analysis. 17:2135-2137
This note provides a counterexample to a proposition stated in [J. Differ. Equ. 261.4 (2016) 2528--2551] regarding the neighborhood of certain $4\times 4$ symplectic matrices.
Comment: 3 pages
Comment: 3 pages
Autor:
Björn Gebhard, Thomas Bartsch
Publikováno v:
Mathematische Annalen. 369:627-651
The paper deals with singular first order Hamiltonian systems of the form \[ \Gamma_k\dot{z}_k(t)=J\nabla_{z_k} H\big(z(t)\big),\quad z_k(t) \in \Omega \subset \mathbb{R}^2,\ k=1,\dots,N, \] where $J\in\mathbb{R}^{2\times2}$ defines the standard symp
Autor:
Rafael Ortega, Björn Gebhard
We investigate stability properties of a type of periodic solutions of the $N$-vortex problem on general domains $\Omega\subset \mathbb{R}^2$. The solutions in question bifurcate from rigidly rotating configurations of the whole-plane vortex system a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fa0a2839b470dd725262a138e8606864
http://arxiv.org/abs/1808.09760
http://arxiv.org/abs/1808.09760
The paper deals with the existence of nonstationary collision-free periodic solutions of singular first order Hamiltonian systems of $N$-vortex type in a domain $\Omega\subset\mathbb{C}$. These are solutions $z(t)=(z_1(t),\dots,z_N(t))$ of \[ \dot{z}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::55cbca5ae9846e46795c79b185f7f3f3
Publikováno v:
Bildverarbeitung für die Medizin 2006 ISBN: 3540321365
Bildverarbeitung für die Medizin
Bildverarbeitung für die Medizin
Mit der Hilfe eines Endoskops kann das Innere des menschlichen Korpers minimalinvasiv erkundet werden. Die Optik des Instruments ist so aufgebaut, dass sie einen weiten Bereich der um die Spitze liegenden Strukuren aufnimmt. Dadurch wird das Bild jed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2cc47d021361510f0561e637f13bce56
https://doi.org/10.1007/3-540-32137-3_61
https://doi.org/10.1007/3-540-32137-3_61