Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Bivek Gupta"'
Publikováno v:
Journal of Applied and Computational Mechanics, Vol 10, Iss 1, Pp 64-79 (2024)
We define a new class of linear canonical wavelet transform (LCWT) and study its properties like inner product relation, reconstruction formula and also characterize its range. We obtain Donoho-Stark’s uncertainty principle for the LCWT and give a
Externí odkaz:
https://doaj.org/article/a6d654ce1b294a7f82b679ef8f630de4
Publikováno v:
Mathematics, Vol 12, Iss 15, p 2379 (2024)
In this article, we construct a Boehmian space using the convolution theorem that contains the offset linear canonical Stockwell transforms (OLCST) of all square-integrable Boehmians. It is also proven that the extended OLCST on square-integrable Boe
Externí odkaz:
https://doaj.org/article/3e333594cbd54264a29a983417618b29
Publikováno v:
Axioms, Vol 12, Iss 10, p 927 (2023)
The multi-resolution analysis (MRA) associated with quadratic phase Fourier transform (QPFT) serves as a tool to construct orthogonal bases of the L2(R). Consequently, it assumes a pivotal role in facilitating potential applications of QPFT. Inspired
Externí odkaz:
https://doaj.org/article/312ecabb08ca4a26adc2868f2e1bde5a
Autor:
Amit K. Verma, Bivek Gupta
Publikováno v:
Opuscula Mathematica, Vol 41, Iss 5, Pp 701-723 (2021)
In this paper we define a new class of continuous fractional wavelet transform (CFrWT) and study its properties in Hardy space and Morrey space. The theory developed generalize and complement some of already existing results.
Externí odkaz:
https://doaj.org/article/8253ec67b0454a03a9cf6448ae0e0ed1
Publikováno v:
Series on Computers and Operations Research ISBN: 9789811261565
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a56b01b13e3b68d1d76f3e86d709365d
https://doi.org/10.1142/9789811261572_0016
https://doi.org/10.1142/9789811261572_0016
Publikováno v:
Journal of Computational and Applied Mathematics. 430:115250
In this paper, we have given a new definition of continuous fractional wavelet transform in $\mathbb{R}^N$, namely the multidimensional fractional wavelet transform (MFrWT) and studied some of the basic properties along with the inner product relatio
Autor:
Bivek Gupta, Amit K. Verma
Publikováno v:
Opuscula Mathematica, Vol 41, Iss 5, Pp 701-723 (2021)
In this paper we define a new class of continuous fractional wavelet transform (CFrWT) and study its properties in Hardy space and Morrey space. The theory developed generalize and complement some of already existing results.
Autor:
Amit Verma, Bivek Gupta
In this errata sheet, we comment on the definition of the kernel of the continuous fractional wavelet transform (CFrWT) studied in the article “A certain family of fractional wavelet transformations” by Srivastava, Khatterwani and Upadhyay [Mathe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5517b750dda1e55cb69293578e6b472c
https://doi.org/10.22541/au.164865112.24902030/v1
https://doi.org/10.22541/au.164865112.24902030/v1
Autor:
Bivek Gupta, Amit K. Verma
Publikováno v:
International Journal of Wavelets, Multiresolution and Information Processing. 20
In this paper, we study the continuous fractional wavelet transform (CFrWT) in [Formula: see text]-dimensional Euclidean space [Formula: see text] with scaling parameter [Formula: see text] such that [Formula: see text]. We obtain inner product relat