Zobrazeno 1 - 10
of 360
pro vyhledávání: '"Bittner E"'
Autor:
Bittner, E. R.
Publikováno v:
Condens. Matter Phys., 2016, vol. 19, No. 2, 23803
We present here a formally exact model for electronic transitions between an initial (donor) and final (acceptor) states linked by an intermediate (bridge) state. Our model incorporates a common set of vibrational modes that are coupled to the donor,
Externí odkaz:
http://arxiv.org/abs/1511.09359
Publikováno v:
Phys.Rev.E80:065201,2009
We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral Random Matrix Theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microsco
Externí odkaz:
http://arxiv.org/abs/0907.4195
Autor:
Akemann, G., Bittner, E.
Publikováno v:
Phys.Rev.Lett. 96 (2006) 222002
We compare analytic predictions of non-Hermitian chiral random matrix theory with the complex Dirac operator eigenvalue spectrum of two-colour lattice gauge theory with dynamical fermions at nonzero chemical potential. The Dirac eigenvalues come in c
Externí odkaz:
http://arxiv.org/abs/hep-lat/0603004
The Regge Calculus is a powerful method to approximate a continuous manifold by a simplicial lattice, keeping the connectivities of the underlying lattice fixed and taking the edge lengths as degrees of freedom. The Discrete Regge Model limits the ch
Externí odkaz:
http://arxiv.org/abs/hep-lat/0311031
Publikováno v:
Phys.Rev.D66:024008,2002
Regge calculus is a powerful method to approximate a continuous manifold by a simplicial lattice, keeping the connectivities of the underlying lattice fixed and taking the edge lengths as degrees of freedom. The discrete Regge model employed in this
Externí odkaz:
http://arxiv.org/abs/hep-lat/0205023
We investigate the eigenvalue spectrum of the staggered Dirac matrix in SU(3) gauge theory and in full QCD as well as in quenched U(1) theory on various lattice sizes. As a measure of the fluctuation properties of the eigenvalues, we consider the nea
Externí odkaz:
http://arxiv.org/abs/hep-lat/0007008
Publikováno v:
Phys.Rev. D59 (1999) 124018
We consider two versions of quantum Regge calculus. The Standard Regge Calculus where the quadratic link lengths of the simplicial manifold vary continuously and the Z_2-Regge Model where they are restricted to two possible values. The goal is to det
Externí odkaz:
http://arxiv.org/abs/hep-lat/9903028
Publikováno v:
Nucl.Phys.Proc.Suppl. 73 (1999) 789-791
An approximation of the Standard Regge Calculus (SRC) was proposed by the $Z_2$-Regge Model ($Z_2$RM). There the edge lengths of the simplicial complexes are restricted to only two possible values, both always compatible with the triangle inequalitie
Externí odkaz:
http://arxiv.org/abs/hep-lat/9809135
Publikováno v:
Frontiers in Quantum Physics (Springer 1998) pp. 303
Standard Regge Calculus provides an interesting method to explore quantum gravity in a non-perturbative fashion but turns out to be a CPU-time demanding enterprise. One therefore seeks for suitable approximations which retain most of its universal fe
Externí odkaz:
http://arxiv.org/abs/hep-lat/9807041
Autor:
Bittner, E. P.1 (AUTHOR) bittnere@unimelb.edu.au, Ashman, H.1 (AUTHOR), van Barneveld, R. J.2 (AUTHOR), McNamara, A.3 (AUTHOR), Thomson, N.4 (AUTHOR), Hearn, A. H.5 (AUTHOR), Dunshea, F. R.1,6 (AUTHOR)
Publikováno v:
Animal Production Science. Jul2021, Vol. 62 Issue 12, p1181-1191. 11p.