Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Bit-parallel multiplier"'
Space Efficient $GF(2^m)$ Multiplier for Special Pentanomials Based on $n$ -Term Karatsuba Algorithm
Publikováno v:
IEEE Access, Vol 8, Pp 27342-27360 (2020)
Recently, new multiplication schemes over the binary extension field GF(2m) based on an n-term Karatsuba algorithm have been proposed for irreducible trinomials. In this paper, we extend these schemes for trinomials to any irreducible polynomials. We
Externí odkaz:
https://doaj.org/article/ba391f2954334f7abf850a2492266664
Publikováno v:
IEEE Access, Vol 8, Pp 173491-173507 (2020)
Recently, hybrid multiplication schemes over the binary extension field $GF(2^{m})$ based on $n$ -term Karatsuba algorithm (KA) have been proposed for irreducible trinomials. Their complexities depend on a decomposition of $m$ and the choice of a gen
Externí odkaz:
https://doaj.org/article/70fbca0e60ac43e98eae7319ae38a59d
Publikováno v:
IEEE Access, Vol 7, Pp 27047-27064 (2019)
We propose bit-parallel GF(2m) multipliers for irreducible trinomials using an n-term Karatsuba algorithm and Mastrovito approach, which are generalizations of the newly proposed multiplication scheme for a specific trinomial. The complexities of the
Externí odkaz:
https://doaj.org/article/8a5672dbef2a4bd08ce36da3f338199e
Publikováno v:
IEEE Access, Vol 6, Pp 43056-43069 (2018)
In this paper, we propose a new type of non-recursive Mastrovito multiplier for GF(2m) using an n-term Karatsuba algorithm (KA), where GF(2m) is defined by an irreducible trinomial, xm+xk +1, m = nk. We show that such a type of trinomial combined wit
Externí odkaz:
https://doaj.org/article/475fc61dc9c0430ea6953b8e91aa3a3f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IEEE Access, Vol 8, Pp 173491-173507 (2020)
Recently, hybrid multiplication schemes over the binary extension field $GF(2^{m})$ based on $n$ -term Karatsuba algorithm (KA) have been proposed for irreducible trinomials. Their complexities depend on a decomposition of $m$ and the choice of a gen
Space Efficient $GF(2^m)$ Multiplier for Special Pentanomials Based on $n$ -Term Karatsuba Algorithm
Publikováno v:
IEEE Access, Vol 8, Pp 27342-27360 (2020)
Recently, new multiplication schemes over the binary extension field $GF(2^{m})$ based on an $n$ -term Karatsuba algorithm have been proposed for irreducible trinomials. In this paper, we extend these schemes for trinomials to any irreducible polynom
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IEEE Access, Vol 7, Pp 27047-27064 (2019)
We propose bit-parallel GF(2m) multipliers for irreducible trinomials using an n-term Karatsuba algorithm and Mastrovito approach, which are generalizations of the newly proposed multiplication scheme for a specific trinomial. The complexities of the
Publikováno v:
IEEE Access, Vol 6, Pp 43056-43069 (2018)
In this paper, we propose a new type of non-recursive Mastrovito multiplier for $\text {GF}(2^{m})$ using an $n$ -term Karatsuba algorithm (KA), where $\text {GF}(2^{m})$ is defined by an irreducible trinomial, $x^{m}+x^{k}+1, m=nk$ . We show that su