Zobrazeno 1 - 10
of 1 492
pro vyhledávání: '"Biswas I"'
Publikováno v:
Journal of Inflammation Research, Vol Volume 13, Pp 823-828 (2020)
Indranil Biswas,1 Gausal A Khan2 1Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; 2Department of Physiology & Physiotherapy, College of Medicine, Nursing and Health Sciences, Fiji National
Externí odkaz:
https://doaj.org/article/6e04b6fa14454de1a37bf12f8d3d0769
Let $C$ be a smooth irreducible complex projective curve of genus $g \geq 2$ and $M$ the moduli space of stable vector bundles on $C$ of rank $n$ and degree $d$ with $\gcd(n,d)=1$. A generalised Picard sheaf is the direct image on $M$ of the tensor p
Externí odkaz:
http://arxiv.org/abs/1812.09732
Publikováno v:
Selecta Mathematica, 2019
We prove the existence of a Galois closure for towers of torsors under finite group schemes over a proper, geometrically connected and geometrically reduced algebraic stack $X$ over a field $k$. This is done by describing the Nori fundamental gerbe o
Externí odkaz:
http://arxiv.org/abs/1706.00739
A constructive version of the Frobenius integrability theorem -- that can be programmed effectively -- is given. This is used in computing invariants of groups of low ranks and recover examples from a recent paper of Boyko, Patera and Popoyvich \cite
Externí odkaz:
http://arxiv.org/abs/1411.0091
Let X be a smooth complete complex toric variety such that the boundary is a simple normal crossing divisor, and let E be a holomorphic vector bundle on X. We prove that E admits an equivariant structure if and only if E admits a logarithmic connecti
Externí odkaz:
http://arxiv.org/abs/1207.6967
We prove that the moduli spaces of framed bundles over a smooth projective curve are rational. We compute the Brauer group of these moduli spaces to be zero under some assumption on the stability parameter.
Comment: 7 pages, to appear in Tbilisi
Comment: 7 pages, to appear in Tbilisi
Externí odkaz:
http://arxiv.org/abs/1110.0384
Autor:
Biswas, I., Trautmann, G.
We consider principal bundles over homogeneous spaces G/P, where P is a parabolic subgroup of a semisimple and simply connected complex linear algebraic group G. We prove that a holomorphic principal H--bundle, where H is a complex reductive group, i
Externí odkaz:
http://arxiv.org/abs/1002.4821
We derive and analyze monotone difference-quadrature schemes for Bellman equations of controlled Levy (jump-diffusion) processes. These equations are fully non-linear, degenerate parabolic integro-PDEs interpreted in the sense of viscosity solutions.
Externí odkaz:
http://arxiv.org/abs/0906.1458
Publikováno v:
Bull. London Math. Soc. 2009
Let $X$ be an irreducible smooth projective curve of genus $g\ge3$ defined over the complex numbers and let ${\mathcal M}_\xi$ denote the moduli space of stable vector bundles on $X$ of rank $n$ and determinant $\xi$, where $\xi$ is a fixed line bund
Externí odkaz:
http://arxiv.org/abs/0805.4131
Publikováno v:
Journ. Math. Kyoto Univ. 49 (2009), 69-82
We generalise the variant of the Babylonian tower theorem for vector bundles on projective spaces proved by I. Coanda and G. Trautmann (2006) to the case of principal $G$-bundles over projective spaces, where $G$ is a linear algebraic group defined o
Externí odkaz:
http://arxiv.org/abs/0710.4064