Zobrazeno 1 - 10
of 99
pro vyhledávání: '"Bisi, Cinzia"'
Autor:
Bisi, Cinzia, Cordella, Davide
Following ideas by Beardon, Minda and Baribeau, Rivard, Wegert in the context of the complex Schwarz-Pick Lemma, we use iterated hyperbolic difference quotients to prove a quaternionic multipoint Schwarz-Pick Lemma, in the context of the theory of sl
Externí odkaz:
http://arxiv.org/abs/2312.09664
Publikováno v:
Nonlinearity, 2024
We study a family of birational maps of smooth affine quadric 3-folds, {over the complex numbers}, of the form $x_1x_4-x_2x_3=$ constant, which seems to have some (among many others) interesting/unexpected characters: a) they are cohomologically hype
Externí odkaz:
http://arxiv.org/abs/2208.14327
Autor:
Bisi, Cinzia, De Martino, Antonino
In this paper we study the following type of functions $f: \mathcal{Q}_{\mathbb{R}_{3}} \to \mathbb{R}_{3}$, where $ \mathcal{Q}_{\mathbb{R}_3}$ is the quadratic cone of the algebra $\mathbb{R}_{3}$. From the fact that it is possible to write the alg
Externí odkaz:
http://arxiv.org/abs/2109.14582
In this paper we investigate a topological characterization of the Runge theorem in the Clifford algebra $ \mathbb{R}_3$ via the description of the homology groups of axially symmetric open subsets of the quadratic cone in $\mathbb{R}_3$.
Externí odkaz:
http://arxiv.org/abs/2109.06507
Autor:
Bisi, Cinzia, Winkelmann, Joerg
Publikováno v:
Journal of Noncommutative Geometry, published on line 2020-10-14
We prove a Runge theorem for and describe the homology of axially symmetric open subsets of H.
Comment: Published on-line on October 14.th 2020 in Journal of Noncommutative Geometry
Comment: Published on-line on October 14.th 2020 in Journal of Noncommutative Geometry
Externí odkaz:
http://arxiv.org/abs/2010.08462
Autor:
Bisi, Cinzia, Winkelmann, Joerg
Publikováno v:
Proc. Amer. Math. Soc., Ser. B, (2020), Vol.7, pp. 106-117
The classical theorem of Picard states that a non-constant holomorphic function $f:\mathbb{C}\to\mathbb{C}$ can avoid at most one value. We investigate how many values a non-constant slice regular function of a quaternionic variable $f:\mathbb{H}\to\
Externí odkaz:
http://arxiv.org/abs/2006.15388
Autor:
Bisi, Cinzia, De Martino, Antonino
Publikováno v:
Indiana University Mathematics Journal, Vol. 71, n.4, (2022), 1675-1705
In this paper we investigate the Brolin's theorem over $\mathbb{H}$, the skew field of quaternions. Moreover, considering a quaternionic polynomial $p$ with real coefficients, we focus on the properties of its equilibrium measure, among the others, t
Externí odkaz:
http://arxiv.org/abs/2003.09899
Autor:
Bisi, Cinzia, Winkelmann, Joerg
Publikováno v:
The Journal of Geometric Analysis,(2020), 1-39. Published on-line on Nov. 5.th 2020
In this article we investigate harmonicity, Laplacians, mean value theorems and related topics in the context of quaternionic analysis. We observe that a Mean Value Formula for slice regular functions holds true and it is a consequence of the well kn
Externí odkaz:
http://arxiv.org/abs/1902.08165
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.