Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Bischof, Rafael"'
Neural Image Classifiers are effective but inherently hard to interpret and susceptible to adversarial attacks. Solutions to both problems exist, among others, in the form of counterfactual examples generation to enhance explainability or adversarial
Externí odkaz:
http://arxiv.org/abs/2310.00761
Autor:
Balmer, Vera M., Kuhn, Sophia V., Bischof, Rafael, Salamanca, Luis, Kaufmann, Walter, Perez-Cruz, Fernando, Kraus, Michael A.
Publikováno v:
Automation in Construction Volume 163, July 2024, 105411
For conceptual design, engineers rely on conventional iterative (often manual) techniques. Emerging parametric models facilitate design space exploration based on quantifiable performance metrics, yet remain time-consuming and computationally expensi
Externí odkaz:
http://arxiv.org/abs/2211.16406
Autor:
Bischof, Rafael, Kraus, Michael
Physics-Informed Neural Networks (PINN) are algorithms from deep learning leveraging physical laws by including partial differential equations together with a respective set of boundary and initial conditions as penalty terms into their loss function
Externí odkaz:
http://arxiv.org/abs/2110.09813
Autor:
Balmer, Vera, Kuhn, Sophia V., Bischof, Rafael, Salamanca, Luis, Kaufmann, Walter, Perez-Cruz, Fernando, Kraus, Michael A.
Publikováno v:
In Automation in Construction July 2024 163
Autor:
Bischof, Rafael, Sprenger, Marius, Riedel, Henrik, Bumann, Matthias, Walczok, Waldemar, Drass, Michael, Kraus, Michael A.
Publikováno v:
In Energy & Buildings 15 October 2023 297
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
KRAUS, MICHAEL A.1 kraus@ibk.baug.ethz.ch, BISCHOF, RAFAEL1, KAUFMANN, WALTER1,2, THOMA, KAREL1
Publikováno v:
Acta Polytechnica CTU Proceedings. 2022, Vol. 36, p99-108. 10p.
Publikováno v:
CE/Papers; Sep2023, Vol. 6 Issue 3/4, p836-842, 7p
Autor:
Balmer, Vera, Kuhn, Sophia, Bischof, Rafael, Salamanca, Luis, Kaufmann, Walter, Perez-Cruz, Fernando, Kraus, Michael
For conceptual design, engineers rely on conventional iterative (often manual) techniques. Emerging parametric models facilitate design space exploration based on quantifiable performance metrics, yet remain time-consuming and computationally expensi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02df9e2668f40c185cd6cd789ac6fce4
http://arxiv.org/abs/2211.16406
http://arxiv.org/abs/2211.16406