Zobrazeno 1 - 10
of 11 166
pro vyhledávání: '"Birth and Death Process"'
Complex networks have played an important role in describing real complex systems since the end of the last century. Recently, research on real-world data sets reports intermittent interaction among social individuals. In this paper, we pay attention
Externí odkaz:
http://arxiv.org/abs/2408.05469
Autor:
Schweinsberg, Jason, Shuai, Yubo
Consider a birth and death process started from one individual in which each individual gives birth at rate $\lambda$ and dies at rate $\mu$, so that the population size grows at rate $r = \lambda - \mu$. Lambert and Harris, Johnston, and Roberts cam
Externí odkaz:
http://arxiv.org/abs/2304.13851
In this paper, we use a linear birth and death process with immigration to model infectious disease propagation when contamination stems from both person-to-person contact and contact with the environment. Our aim is to estimate the parameters of the
Externí odkaz:
http://arxiv.org/abs/2303.00531
Publikováno v:
NeurIPS 2022 - 36th Conference on Neural Information Processing Systems, Nov 2022, New Orleans, United States
In this paper, we revisit the regret of undiscounted reinforcement learning in MDPs with a birth and death structure. Specifically, we consider a controlled queue with impatient jobs and the main objective is to optimize a trade-off between energy co
Externí odkaz:
http://arxiv.org/abs/2302.10667
We consider a neighbourhood random walk on a quadrant, $\{(X_1(t),X_2(t),\varphi(t)):t\geq 0\}$, with state space \begin{eqnarray*} \mathcal{S}&=&\{(n,m,i):n,m=0,1,2,\ldots;i=1,2,\ldots,k(n,m)\}. \end{eqnarray*} Assuming start in state $(n,m,i)$, the
Externí odkaz:
http://arxiv.org/abs/2302.02225
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Applied Mathematical Modelling October 2023 122:151-166
Autor:
Dhaouadi, Lazhar
In this paper I shall give the complete solution of the equations governing the bilateral birth and death process on path set $\mathbb{R}_q=\{q^n,\quad n\in\mathbb{Z}\}$ in which the birth and death rates $\lambda_n=q^{2\nu-2n}$ and $\mu_n=q^{-2n}$ w
Externí odkaz:
http://arxiv.org/abs/2106.14283
Autor:
Bar-Haim, Arie
A new model maps a quantum random walk described by a Hadamard operator to a particular case of a birth and death process. The model is represented by a 2D Markov chain with a stochastic matrix, i.e., all the transition rates are positive, although t
Externí odkaz:
http://arxiv.org/abs/2104.04286
Publikováno v:
In Linear Algebra and Its Applications 15 December 2019 583:1-45