Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Birational invariant"'
Autor:
Rosenberg, Jonathan
Publikováno v:
Transactions of the American Mathematical Society, 2008 Jan 01. 360(1), 383-394.
Externí odkaz:
http://dx.doi.org/10.1090/S0002-9947-07-04320-6
Autor:
Sara Durighetto, Marcello Bernardara
Publikováno v:
Rationality of Varieties ISBN: 9783030754204
We define a categorical birational invariant for minimal geometrically rational surfaces with a conic bundle structure over a perfect field via components of a natural semiorthogonal decomposition. Together with the similar known result on del Pezzo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d8590f5492e55e19f197662ccbb18200
https://doi.org/10.1007/978-3-030-75421-1_5
https://doi.org/10.1007/978-3-030-75421-1_5
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Francesco Bei, Paolo Piazza
Let $(X,h)$ be a compact and irreducible Hermitian complex space. This paper is devoted to various questions concerning the analytic K-homology of $(X,h)$. In the fist part, assuming either $\mathrm{dim}(\mathrm{sing}(X))=0$ or $\mathrm{dim}(X)=2$, w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b779ab962984c1ab37a2a33ab09fefac
http://arxiv.org/abs/1904.06917
http://arxiv.org/abs/1904.06917
Autor:
Will Sawin
Using etale cohomology, we define a birational invariant for varieties in characteristic $p$ that serves as an obstruction to uniruledness - a variant on an obstruction to unirationality due to Ekedahl. We apply this to $\overline{M}_{1,n}$ and show
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::187fc5b7b76efe102eff2c46eca4c022
https://epiga.episciences.org/4134
https://epiga.episciences.org/4134
Autor:
Takashi Hirotsu
Publikováno v:
Hokkaido Math. J. 48, no. 1 (2019), 141-154
A Châtelet surface over a field is a typical geometrically rational surface. Its Chow group of zero-cycles has been studied as an important birational invariant by many researchers since the 1970s. Recently, S. Saito and K. Sato obtained a duality b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::571c3849879e70f94e9db181b4cb87b6
https://projecteuclid.org/euclid.hokmj/1550480647
https://projecteuclid.org/euclid.hokmj/1550480647
Autor:
Yuri Tschinkel, Andrew Kresch
We introduce a variant of the birational symbols group of Kontsevich, Pestun, and the second author, and use this to define birational invariants of algebraic orbifolds.
Comment: 20 pages
Comment: 20 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9ddf48a7afcccc5e9f6cfa70250bde07
Autor:
Olivier Wittenberg, Olivier Benoist
Publikováno v:
Journal für die reine und angewandte Mathematik
Journal für die reine und angewandte Mathematik, 2021, 776, pp.151-200. ⟨10.1515/crelle-2021-0003⟩
Journal für die reine und angewandte Mathematik, 2021, 776, pp.151-200. ⟨10.1515/crelle-2021-0003⟩
This article introduces and studies the tight approximation property, a property of algebraic varieties defined over the function field of a complex or real curve that refines the weak approximation property (and the known cohomological obstructions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8fc6dfae9bf3d2714238994c639a6383
Autor:
Morgan V. Brown, Tyler Foster
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2019:45-62
Let k {{k}} be an algebraically closed field of characteristic 0, and let f : X → Y {f:X\to Y} be a morphism of smooth projective varieties over the ring k ( ( t ) ) {k((t))} of formal Laurent series. We prove that if a general geometric fiber
Autor:
Akinari Hoshi
Publikováno v:
Journal of Algebra. 445:394-432
Let G be a finite group acting on the rational function field C(xg:g∈G)C(xg:g∈G) by CC-automorphisms h(xg)=xhgh(xg)=xhg for any g,h∈Gg,h∈G. Noether's problem asks whether the invariant field C(G)=k(xg:g∈G)GC(G)=k(xg:g∈G)G is rational (i.e