Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Birajdar, G. M."'
Autor:
Birajdar, G. M., Sangle, N. D.
The Chebyshev polynomials are utilized in this study to define the subclass of the bi-univalent function. Also, Chebyshev polynomial bounds and Fekete-Szego inequalities for functions defined in the classes are established.
Comment: 7 Pages
Comment: 7 Pages
Externí odkaz:
http://arxiv.org/abs/2209.08300
Autor:
Birajdar, G. M., Sangle, N. D.
In this paper, we define certain subclass of harmonic univalent function in the unit disc U = {z in C :|z|<1} by using q-differential operator. Also we obtain coefficient inequalities, growth and distortion theorems for this subclass.
Comment: 7
Comment: 7
Externí odkaz:
http://arxiv.org/abs/2209.04707
Autor:
Birajdar, G. M., Sangle, N. D.
In this paper, we introduce the subclass $SHP^{-m}(\alpha,\beta)$ using integral operator and give sufficient coefficient conditions for normalized harmonic univalent function in the subclass $SHP^{-m}(\alpha,\beta)$.These conditions are also shown t
Externí odkaz:
http://arxiv.org/abs/2211.06424
Autor:
Birajdar, G. M., Sangle, N. D.
In this paper, we study subclass of analytic function with negative coefficient defined by integral operator in the unit disc $U = \left\{ {z \in C:\left| z \right| < 1} \right\}$. The results are included coefficient estimates, closure theorem and d
Externí odkaz:
http://arxiv.org/abs/2211.06422
Autor:
Birajdar, G. M., Sangle, N. D.
In this paper, we introduce the class $k$-USH $(u,v,\alpha,\lambda)$ using Al-Oboudi operator which is a subclass of $k$-uniformly harmonic functions. A subclass $k$-UTH $(u,v,\alpha,\lambda)$ of $k$-USH $(u,v,\alpha,\lambda)$ is also been defined an
Externí odkaz:
http://arxiv.org/abs/2211.06423