Zobrazeno 1 - 10
of 121
pro vyhledávání: '"BioCyc"'
Autor:
Hyunwhan Joe, Hong-Gee Kim
Publikováno v:
BMC Bioinformatics, Vol 25, Iss 1, Pp 1-15 (2024)
Abstract Background Metabolic pathway prediction is one possible approach to address the problem in system biology of reconstructing an organism’s metabolic network from its genome sequence. Recently there have been developments in machine learning
Externí odkaz:
https://doaj.org/article/053bec36905745f6946f4a92c67377b4
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
BMC Genomics, Vol 22, Iss 1, Pp 1-11 (2021)
Abstract Background Enrichment or over-representation analysis is a common method used in bioinformatics studies of transcriptomics, metabolomics, and microbiome datasets. The key idea behind enrichment analysis is: given a set of significantly expre
Externí odkaz:
https://doaj.org/article/2d9bd4ebc1624d689a01172f053f63dc
Publikováno v:
Microbiome, Vol 7, Iss 1, Pp 1-8 (2019)
Abstract Background Microbiomes are complex aggregates of organisms, each of which has its own extensive metabolic network. A variety of metabolites are exchanged between the microbes. The challenge we address is understanding the overall metabolic c
Externí odkaz:
https://doaj.org/article/0abf236cb2894e519d232a4385b75158
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Metabolites, Vol 9, Iss 5, p 88 (2019)
Interpreting changes in metabolite abundance in response to experimental treatments or disease states remains a major challenge in metabolomics. Pathway Covering is a new algorithm that takes a list of metabolites (compounds) and determines a minimum
Externí odkaz:
https://doaj.org/article/b6909947531a4088a59e75f928131611
Autor:
Baa-Puyoulet, Patrice, Parisot, Nicolas, Peignier, Sergio, Calevro, Federica, Charles, Hubert
Publikováno v:
12. Rencontre du Réseau Français de Biologie Adaptative des Pucerons et Organismes Associés (BAPOA)
12. Rencontre du Réseau Français de Biologie Adaptative des Pucerons et Organismes Associés (BAPOA), May 2022, Nice, France
13ème Réunion du Réseau Français de Biologie Adaptative des Pucerons et Organismes Associés (BAPOA)
13ème Réunion du Réseau Français de Biologie Adaptative des Pucerons et Organismes Associés (BAPOA), 2020, Nice (virtuel), France
12. Rencontre du Réseau Français de Biologie Adaptative des Pucerons et Organismes Associés (BAPOA), May 2022, Nice, France
13ème Réunion du Réseau Français de Biologie Adaptative des Pucerons et Organismes Associés (BAPOA)
13ème Réunion du Réseau Français de Biologie Adaptative des Pucerons et Organismes Associés (BAPOA), 2020, Nice (virtuel), France
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::b370a293cd2107da603fea3f076d8c03
https://hal.inrae.fr/hal-03810352
https://hal.inrae.fr/hal-03810352
Publikováno v:
Frontiers in Microbiology
Frontiers in Microbiology, Vol 12 (2021)
Frontiers in Microbiology, Vol 12 (2021)
Updating genome databases to reflect newly published molecular findings for an organism was hard enough when only a single strain of a given organism had been sequenced. With multiple sequenced strains now available for many organisms, the challenge
Publikováno v:
Pathogens, Vol 9, Iss 747, p 747 (2020)
Pathogens
Volume 9
Issue 9
Pathogens
Volume 9
Issue 9
The class 1 carcinogen, Helicobacter pylori, is one of the World Health Organization&rsquo
s high priority pathogens for antimicrobial development. We used three subtractive proteomics approaches using protein pools retrieved from: chokepoint re
s high priority pathogens for antimicrobial development. We used three subtractive proteomics approaches using protein pools retrieved from: chokepoint re
Publikováno v:
BMC Genomics
BMC Genomics, Vol 22, Iss 1, Pp 1-11 (2021)
BMC Genomics, Vol 22, Iss 1, Pp 1-11 (2021)
Background Enrichment or over-representation analysis is a common method used in bioinformatics studies of transcriptomics, metabolomics, and microbiome datasets. The key idea behind enrichment analysis is: given a set of significantly expressed gene