Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Bini, Dario Andrea"'
Publikováno v:
Linear Algebra and its Applications 703 (2024) 137-16
Given a stochastic matrix $P$ partitioned in four blocks $P_{ij}$, $i,j=1,2$, Kemeny's constant $\kappa(P)$ is expressed in terms of Kemeny's constants of the stochastic complements $P_1=P_{11}+P_{12}(I-P_{22})^{-1}P_{21}$, and $P_2=P_{22}+P_{21}(I-P
Externí odkaz:
http://arxiv.org/abs/2312.13201
Publikováno v:
In Linear Algebra and Its Applications 15 December 2024 703:137-162
We consider the problem of computing the minimal nonnegative solution $G$ of the nonlinear matrix equation $X=\sum_{i=-1}^\infty A_iX^{i+1}$ where $A_i$, for $i\ge -1$, are nonnegative square matrices such that $\sum_{i=-1}^\infty A_i$ is stochastic.
Externí odkaz:
http://arxiv.org/abs/2008.11051
Publikováno v:
Linear Algebra Appl. 519 (2017) 27-53
It was recently observed that the singular values of the off-diagonal blocks of the matrix sequences generated by the Cyclic Reduction algorithm decay exponentially. This property was used to solve, with a higher efficiency, certain quadratic matrix
Externí odkaz:
http://arxiv.org/abs/1608.01567
Autor:
Bini, Dario Andrea1 bini@dm.unipi.it, Meini, Beatrice1 meini@dm.unipi.it
Publikováno v:
SIAM Journal on Matrix Analysis & Applications. 1999, Vol. 20 Issue 3, p700-719. 20p.
Autor:
Anichini, Francesca, Bini, DARIO ANDREA, Dubbini, Nevio, Fabiani, Fabio, Gattiglia, Gabriele, GHIZZANI MARCIA, Francesco, Grassini, F., Gualandi, MARIA LETIZIA, Parodi, Luca, Steffe', Sergio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3728::f6c5d295216e3501f7791c1c8b54ea61
http://hdl.handle.net/11568/241341
http://hdl.handle.net/11568/241341
Autor:
Anichini, Francesca, Bini, DARIO ANDREA, Bini, Monica, Dubbini, Nevio, Fabiani, Fabio, Gattiglia, Gabriele, Giacomelli, S., Gualandi, MARIA LETIZIA, Pappalardo, Marta, Rossi, V., Sarti, Giovanni, Steffe', Sergio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3728::a96592728042c31e927b6fd16b56b183
http://hdl.handle.net/11568/175912
http://hdl.handle.net/11568/175912