Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Bilu, Margaret"'
Autor:
Bilu, Margaret, Browning, Tim
The circle method has been successfully used over the last century to study rational points on hypersurfaces. More recently, a version of the method over function fields, combined with spreading out techniques, has led to a range of results about mod
Externí odkaz:
http://arxiv.org/abs/2304.09645
Autor:
Bilu, Margaret1 (AUTHOR), Ho, Wei2 (AUTHOR), Srinivasan, Padmavathi3 (AUTHOR), Vogt, Isabel4 (AUTHOR), Wickelgren, Kirsten5 (AUTHOR)
Publikováno v:
Transactions of the American Mathematical Society, Series B. 10/2/2024, Vol. 11, p1183-1225. 43p.
We define an enrichment of the logarithmic derivative of the zeta function of a variety over a finite field to a power series with coefficients in the Grothendieck--Witt group. We show that this enrichment is related to the topology of the real point
Externí odkaz:
http://arxiv.org/abs/2210.03035
We introduce the Hadamard topology on the Witt ring of rational functions, giving a simultaneous refinement of the weight and point-counting topologies. Zeta functions of algebraic varieties over finite fields are elements of the rational Witt ring,
Externí odkaz:
http://arxiv.org/abs/2012.14841
Autor:
Bilu, Margaret, Howe, Sean
We formulate and prove an analog of Poonen's finite-field Bertini theorem with Taylor conditions that holds in the Grothendieck ring of varieties. This gives a broad generalization of the work of Vakil-Wood, who treated the case of smooth hypersurfac
Externí odkaz:
http://arxiv.org/abs/1910.05207
Autor:
Bilu, Margaret
L’objectif de cette thèse est l’étude de la fonction zêta des hauteurs motivique associée à un problème de comptage de courbes sur les compactifications équivariantes d’espaces affines, résolvant au chapitre 6 l’analogue motivique de
Externí odkaz:
http://www.theses.fr/2017SACLS485/document
Autor:
Bilu, Margaret
A motivic height zeta function associated to a family of varieties parametrised by a curve is the generating series of the classes, in the Grothendieck ring of varieties, of moduli spaces of sections of this family with varying degrees. This text is
Externí odkaz:
http://arxiv.org/abs/1802.06836
Publikováno v:
In Advances in Mathematics 8 October 2022 407
These are expanded notes of the mini-courses on Pila's work that Yuri Bilu gave in Basel in April 2011, Yaroslavl in August 2011 and Chennai in February 2012. The topics covered include the Bombieri-Pila theorem, its extensions and applications to so
Externí odkaz:
http://arxiv.org/abs/1408.1441