Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Billy Okal"'
Publikováno v:
SoftwareX, Vol 26, Iss , Pp 101661- (2024)
Reliable forest data is crucial for policy and investment decisions, hence the need to monitor forests. Tree harvesting policies, informed by tree attribute data, can help prevent excessive logging. The use of stereoscopic vision for estimating tree
Externí odkaz:
https://doaj.org/article/7deb46739ce44e7c9266fd6c48e9d43c
Publikováno v:
Challenges, Vol 15, Iss 1, p 16 (2024)
Forests are a vital source of food, fuel, and medicine and play a crucial role in climate change mitigation. Strategic and policy decisions on forest management and conservation require accurate and up-to-date information on available forest resource
Externí odkaz:
https://doaj.org/article/0381551d6ce140598bb0ce06230bc71f
Publikováno v:
SSRN Electronic Journal.
Autor:
Billy Okal, Kai O. Arras
Publikováno v:
ICRA
Mobile robots that navigate in populated environments require the capacity to move efficiently, safely and in human-friendly ways. In this paper, we address this task using a learning approach that enables a mobile robot to acquire navigation behavio
Autor:
Billy Okal, Kai O. Arras
Publikováno v:
Machine Learning and Knowledge Discovery in Databases ISBN: 9783319461304
ECML/PKDD (3)
ECML/PKDD (3)
Inverse reinforcement learning (irl) provides a concise framework for learning behaviors from human demonstrations; and is highly desired in practical and difficult to specify tasks such as normative robot navigation. However, most existing irl algor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5165efa456da97614613105977d55984
https://doi.org/10.1007/978-3-319-46131-1_33
https://doi.org/10.1007/978-3-319-46131-1_33
Autor:
Kai O. Arras, Billy Okal
Publikováno v:
Social Robotics ISBN: 9783319474366
ICSR
ICSR
We address the task of modeling, generating and evaluating normative behavior for interactive robots. Normative behavior is essential for coherent deployment of these robots in human populated spaces. We develop a first unifying, intuitive and genera
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c297e14d1b042aed41d61f1ff133fd1e
https://doi.org/10.1007/978-3-319-47437-3_7
https://doi.org/10.1007/978-3-319-47437-3_7
Publikováno v:
IEEE-RSJ Int. Conf. on Intelligent Robots and Systems
IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, 2014, Chicago, United States. pp.1341-1346, ⟨10.1109/IROS.2014.6942731⟩
IROS
IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, 2014, Chicago, United States. pp.1341-1346, ⟨10.1109/IROS.2014.6942731⟩
IROS
International audience; — For mobile robots which operate in human pop-ulated environments, modeling social interactions is key to understand and reproduce people's behavior. A promising approach to this end is Inverse Reinforcement Learning (IRL)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dac39733b3dcf4bd2f0093a754248be4
https://hal.inria.fr/hal-01105265
https://hal.inria.fr/hal-01105265
Autor:
Andreas Nüchter, Billy Okal
Publikováno v:
ICAR
Perception plays a key role in the development of intelligent autonomous systems. In particular object recognition and registration tasks are crucial to any intelligent autonomous system such as autonomous cars or personal robots. The representation