Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Billey, Sara C."'
Autor:
Billey, Sara C., Swanson, Joshua P.
It is a remarkable fact that for many statistics on finite sets of combinatorial objects, the roots of the corresponding generating function are each either a complex root of unity or zero. These and related polynomials have been studied for many yea
Externí odkaz:
http://arxiv.org/abs/2305.07620
Autor:
Billey, Sara C., Weaver, Jordan E.
Positroids are certain representable matroids originally studied by Postnikov in connection with the totally nonnegative Grassmannian and now used widely in algebraic combinatorics. The positroids give rise to determinantal equations defining positro
Externí odkaz:
http://arxiv.org/abs/2207.06508
Autor:
Billey, Sara C., Weaver, Jordan E.
Positroids are certain representable matroids originally studied by Postnikov in connection with the totally nonnegative Grassmannian and now used widely in algebraic combinatorics. The positroids give rise to determinantal equations defining positro
Externí odkaz:
http://arxiv.org/abs/2204.09013
Autor:
Billey, Sara C., Swanson, Joshua P.
In earlier work, Billey--Konvalinka--Swanson studied the asymptotic distribution of the coefficients of Stanley's $q$-hook length formula, or equivalently the major index on standard tableaux of straight shape and certain skew shapes. We extend those
Externí odkaz:
http://arxiv.org/abs/2010.12701
The study of permutation and partition statistics is a classical topic in enumerative combinatorics. The major index statistic on permutations was introduced a century ago by Percy MacMahon in his seminal works. In this extended abstract, we study th
Externí odkaz:
http://arxiv.org/abs/2005.10341
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Baird, Molly, Billey, Sara C., Demaine, Erik D., Demaine, Martin L., Eppstein, David, Fekete, Sándor, Gordon, Graham, Griffin, Sean, Mitchell, Joseph S. B., Swanson, Joshua P.
Publikováno v:
Electronic J. Combinatorics 27 (4), Paper 4.25, 2020
An open problem of Manuel Abellanas asks whether every set of disjoint closed unit disks in the plane can be connected by a conveyor belt, which means a tight simple closed curve that touches the boundary of each disk, possibly multiple times. We pro
Externí odkaz:
http://arxiv.org/abs/1908.07668
We consider the distribution of the major index on standard tableaux of arbitrary straight shape and certain skew shapes. We use cumulants to classify all possible limit laws for any sequence of such shapes in terms of a simple auxiliary statistic, a
Externí odkaz:
http://arxiv.org/abs/1905.00975
Let $1\leq k \leq n$ and let $X_n = (x_1, \dots, x_n)$ be a list of $n$ variables. The {\em Boolean product polynomial} $B_{n,k}(X_n)$ is the product of the linear forms $\sum_{i \in S} x_i$ where $S$ ranges over all $k$-element subsets of $\{1, 2, \
Externí odkaz:
http://arxiv.org/abs/1902.11165
We introduce two new partial orders on the standard Young tableaux of a given partition shape, in analogy with the strong and weak Bruhat orders on permutations. Both posets are ranked by the major index statistic offset by a fixed shift. The existen
Externí odkaz:
http://arxiv.org/abs/1809.07386