Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Bikchantaev, I."'
Autor:
Bikchantaev, I. A.1 (AUTHOR) ibikchan@kpfu.ru
Publikováno v:
Differential Equations. Jul2020, Vol. 56 Issue 7, p813-818. 6p.
Autor:
Bikchantaev, I.1 ibikchan@kpfu.ru
Publikováno v:
Differential Equations. May2017, Vol. 53 Issue 5, p623-629. 7p.
Autor:
Bikchantaev, I.1 Ildar.Bikchantaev@kpfu.ru
Publikováno v:
Differential Equations. Feb2014, Vol. 50 Issue 2, p220-225. 6p.
Autor:
Bikchantaev, I.1
Publikováno v:
Differential Equations. Feb2011, Vol. 47 Issue 2, p278-282. 5p.
Autor:
Bikchantaev, I.1
Publikováno v:
Differential Equations. Feb2007, Vol. 43 Issue 2, p280-285. 6p.
Autor:
Bikchantaev, I. A.
Publikováno v:
Mathematical Notes. Jan/Feb2004, Vol. 75 Issue 1/2, p3-12. 10p.
Autor:
Bikchantaev I.
Publikováno v:
SCOPUS1066369X-2017-61-7-SID85019565275
© 2017, Allerton Press, Inc.The interior uniqueness theorem for analytic functions was generalized by M. B. Balk to the case of polyanalytic functions of order n. He proved that if the zeros of a polyanalytic function have an accumulation point of o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::51e952d6742405b7130a1bd87a889c26
https://dspace.kpfu.ru/xmlui/handle/net/143441
https://dspace.kpfu.ru/xmlui/handle/net/143441
Autor:
Bikchantaev I.
Publikováno v:
SCOPUS00122661-2017-53-5-SID85020767298
© 2017, Pleiades Publishing, Ltd. We consider a boundary value problem for a second-order linear elliptic differential equation with constant coefficients in a domain that is the exterior of an ellipse. The boundary conditions of the problem contain
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::0c510c05d2ea6ec1a05a20adc0ef2129
https://openrepository.ru/article?id=704259
https://openrepository.ru/article?id=704259
Autor:
Bikchantaev I.
Publikováno v:
SCOPUS19950802-2016-37-3-SID84971529551
© 2016, Pleiades Publishing, Ltd.The interior uniqueness theorem for analytic functions was generalized by M.B. Balk to the case of polyanalytic functions of order n. He proved that, if the zeros of a polyanalytic function have an accumulation point
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::447173d806761e793177702e9c0b790d
https://openrepository.ru/article?id=52392
https://openrepository.ru/article?id=52392
Autor:
Bikchantaev, I. A.
Publikováno v:
Russian Mathematics; Feb2019, Vol. 63 Issue 2, p11-17, 7p