Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Bijan Taeri"'
Autor:
Bijan Taeri, Ziba Tooshmalani
Publikováno v:
International Journal of Group Theory, Vol 14, Iss 3, Pp 139-147 (2024)
For a finite group $G$, the average order $o(G)$ is defined to be the average of all order elements in $G$, that is $o( G)=\frac{1}{|G|}\sum_{x\in G}o(x)$, where $o(x)$ is the order of element $x$ in $G$. Jaikin-Zapirain in [On the number of conjugac
Externí odkaz:
https://doaj.org/article/bf0aaf0e6cdc4d0ca727d0b945f70065
Autor:
Zahara Bahrami, Bijan Taeri
Publikováno v:
International Journal of Group Theory, Vol 10, Iss 4, Pp 175-186 (2021)
Let $G$ be a finite group which is not cyclic of prime power order. The join graph $\Delta(G)$ of $G$ is a graph whose vertex set is the set of all proper subgroups of $G$, which are not contained in the Frattini subgroup $G$ and two d
Externí odkaz:
https://doaj.org/article/efe0a3519ff5426c934e17037f09b20d
Autor:
Bijan Taeri, Fatemeh Tayanloo-Beyg
Publikováno v:
International Journal of Group Theory, Vol 10, Iss 1, Pp 47-53 (2021)
We characterize finite non-nilpotent groups $G$ with a unique non-nilpotent proper subgroup. We show that $|G|$ has at most three prime divisors. When $G$ is supersolvable we find the presentation of $G$ and when $G$ is non-supersolvab
Externí odkaz:
https://doaj.org/article/2217444d91b84d82b1163eeca028c4f5
Autor:
Majid Arezoomand, Bijan Taeri
Publikováno v:
International Journal of Group Theory, Vol 5, Iss 2, Pp 1-6 (2016)
Let $S$ be a subset of a finite group $G$. The bi-Cayley graph ${rm BCay}(G,S)$ of $G$ with respect to $S$ is an undirected graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid xin G, sin S}$. A bi-Cayley graph $
Externí odkaz:
https://doaj.org/article/92361858a6f14072a0be84a42da6bb62
Autor:
Leila Mousavi, Bijan Taeri
Publikováno v:
International Journal of Group Theory, Vol 5, Iss 1, Pp 29-35 (2016)
Let $pi_e(G)$ be the set of element orders of a finite group $G$. Let $nse(G)={m_nmid ninpi_e(G)}$, where $m_n$ be the number of elements of order $n$ in $G$. In this paper, we prove that if $nse(G)=nse(L_2(81))$, then $
Externí odkaz:
https://doaj.org/article/b872184a49a442f294dbf5481e4ed4c4
Autor:
Majid Arezoomand, Bijan Taeri
Publikováno v:
Transactions on Combinatorics, Vol 4, Iss 4, Pp 55-61 (2015)
The bi-Cayley graph of a finite group G with respect to a subset S⊆G , which is denoted by \BCay(G,S) , is the graph with vertex set G×{1,2} and edge set {{(x,1),(sx,2)}∣x∈G, s∈S} . A finite group G
Externí odkaz:
https://doaj.org/article/1ff66adc98024f03bf3db3ca5bf5d856
Autor:
MEHDI ELIASI, BIJAN TAERI
Publikováno v:
Journal of the Serbian Chemical Society, Vol 73, Iss 3, Pp 311-319 (2008)
The Hosoya polynomial of a molecular graph G is defined as ... , where d(u,v) is the distance between vertices u and v. The first derivative of H(G,l) at l = 1 is equal to the Wiener index of G, defined as .... . The second derivative of .... at l =
Externí odkaz:
https://doaj.org/article/dd51331c6d0f48ba97d3076f02b3f2df
Autor:
Bijan TAERI, Fatemeh TAYANLOO-BEYG
Publikováno v:
TURKISH JOURNAL OF MATHEMATICS. 45:2393-2405
Publikováno v:
Publicationes Mathematicae Debrecen. 96:459-474
Autor:
Bijan Taeri, Zahar Mozafar
Publikováno v:
Volume: 49, Issue: 1 273-281
Hacettepe Journal of Mathematics and Statistics
Hacettepe Journal of Mathematics and Statistics
Let $G$ be a group. The Acentralizer of an automorphism $\alpha$ of $G$, is the subgroup of fixed points of $\alpha$, i.e., $C_G(\alpha)= \{g\in G \mid \alpha(g)=g\}$. We show that if $G$ is a finite Abelian $p$-group of rank $2$, where $p$ is an odd