Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Bigorgne, Léo"'
Autor:
Bigorgne, Léo, Ruiz, Renato Velozo
In this paper, we study the precise late-time asymptotic behaviour of small data solutions for the Vlasov-Poisson system in dimension three. First, we show that the spatial density and the force field satisfy asymptotic self-similar polyhomogeneous e
Externí odkaz:
http://arxiv.org/abs/2404.05812
Autor:
Bigorgne, Léo
We construct an isometric modified scattering operator, mapping any sufficiently regular past scattering state, with a small distribution function, to the future one corresponding to forward evolution by the Vlasov-Maxwell system. The main part of th
Externí odkaz:
http://arxiv.org/abs/2312.12214
In this paper, we study small data solutions to the Vlasov-Poisson system with the simplest external potential, for which unstable trapping holds for the associated Hamiltonian flow. First, we provide a new proof of global existence for small data so
Externí odkaz:
http://arxiv.org/abs/2310.17424
Autor:
Bigorgne, Léo
The purpose of this paper is twofold. In the first part, we provide a new proof of the global existence of the solutions to the Vlasov-Maxwell system with a small initial distribution function. Our approach relies on vector field methods, together wi
Externí odkaz:
http://arxiv.org/abs/2208.08360
Autor:
Bigorgne, Léo
L'objectif de cette thèse est de décrire le comportement asymptotique des solutions à données petites du système de Vlasov-Maxwell. En particulier, on s'attachera à étudier tant le champ électromagnétique que le champ de Vlasov par des méth
Externí odkaz:
http://www.theses.fr/2019SACLS164/document
Autor:
Bigorgne, Léo
We consider solutions to the massless Vlasov equation on the domain of outer communications of the Schwarschild black hole. By adapting the r^p-weighted energy method of Dafermos and Rodnianski, used extensively in order to study wave equations, we p
Externí odkaz:
http://arxiv.org/abs/2006.03579
We prove the global asymptotic stability of the Minkowski space for the massless Einstein-Vlasov system in wave coordinates. In contrast with previous work on the subject, no compact support assumptions on the initial data of the Vlasov field in spac
Externí odkaz:
http://arxiv.org/abs/2003.03346
Autor:
Bigorgne, Léo
In this article, we present a vector field method for the study of solutions to massless relativistic transport equations. Compared to the methodologie developped by Fajman-Joudioux-Smulevici, we remove the Lorentz boosts of the commutation vector fi
Externí odkaz:
http://arxiv.org/abs/1907.03121
Autor:
Bigorgne, Léo
This paper is concerned with the asymptotic behavior of small data solutions to the three-dimensional Vlasov-Maxwell system in the exterior of a light cone. The plasma does not have to be neutral and no compact support assumptions are required on the
Externí odkaz:
http://arxiv.org/abs/1902.00764
Autor:
Bigorgne, Léo
We study the asymptotic properties of the small data solutions of the Vlasov-Maxwell system in dimension three. No neutral hypothesis nor compact support assumptions are made on the data. In particular, the initial decay in the velocity variable is o
Externí odkaz:
http://arxiv.org/abs/1812.11897