Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Biebler, Sébastien"'
Autor:
Biebler, Sébastien
A blender for a surface endomorphism is a hyperbolic basic set for which the union of the local unstable manifolds contains robustly an open set. Introduced by Bonatti and D{\'i}az in the 90s, blenders turned out to have many powerful applications to
Externí odkaz:
http://arxiv.org/abs/2012.15528
Autor:
Berger, Pierre, Biebler, Sebastien
We prove the existence of a locally dense set of real polynomial automorphisms of C 2 displaying a wandering Fatou component; in particular this solves the problem of their existence, reported by Bedford and Smillie in 1991. These Fatou components ha
Externí odkaz:
http://arxiv.org/abs/2001.08649
Autor:
Biebler, Sébastien
Inspired by the work of Newhouse in one real variable, we introduce a relevant notion of thickness for dynamical Cantor sets of the plane associated to a holomorphic IFS. Our main result is a complex version of Newhouse's Gap Lemma : we show that und
Externí odkaz:
http://arxiv.org/abs/1810.02544
Autor:
Biebler, Sébastien
We show the existence of open sets of bifurcations near Latt{\`e}s maps of sufficiently high degree. In particular, every Latt{\`e}s map has an iterate which is in the closure of the interior of the bifurcation locus. To show this, we design a method
Externí odkaz:
http://arxiv.org/abs/1801.06339
Autor:
Biebler, Sébastien
We show that there exists a polynomial automorphism $f$ of $\mathbb{C}^{3}$ of degree 2 such that for every automorphism $g$ sufficiently close to $f$, $g$ admits a tangency between the stable and unstable laminations of some hyperbolic set. As a con
Externí odkaz:
http://arxiv.org/abs/1611.02011
Autor:
Biebler, Sébastien
Publikováno v:
In Advances in Mathematics 12 February 2020 361
Autor:
Berger, Pierre, Biebler, Sébastien
Publikováno v:
Journal of the American Mathematical Society; Apr2023, Vol. 36 Issue 2, p397-482, 86p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Biebler, Sébastien
We show that there exists a polynomial automorphism $f$ of $\mathbb{C}^{3}$ of degree 5 such that for every automorphism $g$ sufficiently close to $f$, $g$ admits a tangency between the stable and unstable laminations of some hyperbolic set. As a con
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a7363fe204a3336cde461b7cc5f4a680
https://hal.archives-ouvertes.fr/hal-01392917v3/document
https://hal.archives-ouvertes.fr/hal-01392917v3/document
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.