Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Biard, Séverine"'
Autor:
Biard, Séverine, Wu, Jujie
We prove that a plurisbharmonic function on a bounded domain $\Omega$ in $\mathbb{C}^n$ is a VMO (Vanishing Mean Oscillation) function if and only if its Lelong number at each point of $\Omega$ vanishes. This result contributes to a better understand
Externí odkaz:
http://arxiv.org/abs/2403.03568
Publikováno v:
J. Geom. Anal. 33 (2023), Article No. 338
We discuss residue formulae that localize the first Chern class of a line bundle to the singular locus of a given holomorphic connection. As an application, we explain a proof for Brunella's conjecture about exceptional minimal sets of codimension on
Externí odkaz:
http://arxiv.org/abs/2210.09273
Autor:
Adachi, Masanori, Biard, Severine
Publikováno v:
Math. Z. 301 (2022), 373-383
We prove the non-existence of real analytic Levi flat hypersurface whose complement is 1-convex and Levi foliation is transversely affine in compact Kahler surfaces.
Externí odkaz:
http://arxiv.org/abs/2011.06379
We study the density of polynomials in $H^2(E,\varphi)$, the space of square integrable functions with respect to $e^{-\varphi}dm$ and holomorphic on the interior of $E$ in $\mathbb{C}$, where $\varphi$ is a subharmonic function and $dm$ is a measure
Externí odkaz:
http://arxiv.org/abs/1910.05777
We study the density of polynomials in $H^2(\Omega,e^{-\varphi})$, the space of square integrable holomorphic functions in a bounded domain $\Omega$ in $\mathbb{C}$, where $\varphi$ is a subharmonic function. In particular, we prove that the density
Externí odkaz:
http://arxiv.org/abs/1805.11756
Autor:
Biard, Séverine, Straube, Emil J.
Let $M$ be a pseudoconvex, oriented, bounded and closed CR submanifold of $\mathbb{C}^{n}$ of hypersurface type. We show that Sobolev estimates for the complex Green operator hold simultaneously for forms of symmetric bidegrees, that is, they hold fo
Externí odkaz:
http://arxiv.org/abs/1704.04212
Autor:
Biard, Séverine, Straube, Emil J.
These notes are concerned with the $L^{2}$-Sobolev theory of the complex Green operator on pseudoconvex, oriented, bounded and closed CR--submanifolds of $\mathbb{C}^{n}$ of hypersurface type. This class of submanifolds generalizes that of boundaries
Externí odkaz:
http://arxiv.org/abs/1606.00728
Autor:
Biard, Séverine, Iordan, Andrei
We prove that the normal bundle to the Levi foliation of a smooth Levi flat hypersurface does not admit a Hermitian metric with positive curvature along the leaves in compact K\"ahler manifolds of dimension at least 3. This represents an answer to a
Externí odkaz:
http://arxiv.org/abs/1406.5712
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
BIARD, SÉVERINE
Publikováno v:
数理解析研究所講究録. 2175:72-86
This note is a summary of a lecture on the results of [8] about estimates for the complex Green operator, given by the author in the occasion of the conference: “Topology of pseudoconvex domains and analysis of reproducing kernels” on November 20