Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Bianca Stroffolini"'
Autor:
3934/mine., Bianca Stroffolini
Publikováno v:
Mathematics in Engineering, Vol 5, Iss 5, Pp 1-47 (2023)
We study partial Hölder regularity for nonlinear elliptic systems in divergence form with double-phase growth, modeling double-phase non-Newtonian fluids in the stationary case.
Externí odkaz:
https://doaj.org/article/9a3fac647577472593f6ee4ccfc15825
Autor:
Bianca Stroffolini
Publikováno v:
Electronic Journal of Differential Equations, Vol 2001, Iss 02, Pp 1-7 (2001)
The present paper is concerned with p-harmonic systems $$ mathop{ m div} (langle A(x) Du(x), Du(x) angle ^{{p-2}over 2} A(x) Du(x))=mathop{ m div} ( sqrt{A(x)} F(x)),$$ where $A(x)$ is a positive definite matrix whose entries have bounded mean oscill
Externí odkaz:
https://doaj.org/article/9c11839b09af4b9db82731bcd9832b02
Autor:
Bianca Stroffolini, Vincenzo Vespri
Publikováno v:
Le Matematiche, Vol 55, Iss 4, Pp 165-195 (2000)
We extend some result of [2] proving the continuity of bounded solutions of the singular equation (β(u))_t=Lu where L is a more general operator of second order.
Externí odkaz:
https://doaj.org/article/fb7812cde88c4ab4b309454d6ed330d5
We prove sharp partial regularity criteria of nonlinear potential theoretic nature for the Lebesgue-Serrin-Marcellini extension of nonhomogeneous singular multiple integrals featuring $(p,q)$-growth conditions.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df548528f5c82568622bb07c0abb1c63
http://arxiv.org/abs/2203.05519
http://arxiv.org/abs/2203.05519
Autor:
Giovanni Scilla, Bianca Stroffolini
We study partial Hölder regularity for nonlinear elliptic systems in divergence form with double-phase growth, modeling double-phase non-Newtonian fluids in the stationary case.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::da9034a08764842fca79a6b8e931ab21
Autor:
Giovanni Scilla, Bianca Stroffolini
Publikováno v:
Association for Women in Mathematics Series ISBN: 9783031044953
We extend the global invertibility result (Henao et al., Adv Calculus Var 14(2):207–230, 2021) to a class of orientation-preserving Orlicz–Sobolev maps with an integrability just above n − 1, whose traces on the boundary are also Orlicz–Sobol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1364c43745388ee2e8afef704f171d4e
https://doi.org/10.1007/978-3-031-04496-0_13
https://doi.org/10.1007/978-3-031-04496-0_13
Publikováno v:
Nonlinear Analysis. 223:113058
We prove the partial Hölder continuity for minimizers of quasiconvex functionals \begin{equation*} \mathcal{F}({\bf u}) \colon =\int_{\Omega} f(x,{\bf u},D{\bf u})\,\textrm{d} x, \end{equation*} where $f$ satisfies a uniform VMO condition with respe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aabf204e9ca0adb09bc368aa6bed27dd
http://arxiv.org/abs/2101.09472
http://arxiv.org/abs/2101.09472
Autor:
Bianca Stroffolini, Juan J. Manfredi
We prove uniform convergence in Lipschitz domains of approximations top-harmonic functions obtained using the naturalp-means introduced by Ishiwata, Magnanini, and Wadade [Calc. Var. Partial Differ. Equ.56(2017) 97]. We also consider convergence of n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::81082c8f9f480d0abeef73eb4326af41
http://hdl.handle.net/11588/854160
http://hdl.handle.net/11588/854160
We study the regularity properties of the second order linear operator in $\mathbb{R}^{N+1}$: \begin{equation*} \mathscr{L} u := \sum_{j,k= 1}^{m} a_{jk}\partial_{x_j x_k}^2 u + \sum_{j,k= 1}^{N} b_{jk}x_k \partial_{x_j} u - \partial_t u, \end{equati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ad77cdbe62ccf25e7056c8d4bedc1c6