Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Bianca Gariboldi"'
Autor:
Bianca Gariboldi, Giacomo Gigante
Publikováno v:
Mathematische Zeitschrift. 302:783-801
We show how to build a kernel \[ K_X(x,y)=\sum_{m=0}^Xh(\lambda_m/{\lambda_X})\varphi_m(x)\overline{\varphi_m(y)} \] on a compact Riemannian manifold $M$, which is positive up to a negligible error and such that $K_X(x,x)\approx X$. Here $0=\lambda_0
We give asymptotic estimates of the variance of the number of integer points in translated thin annuli in any dimension.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c0f9a6b5398014ee8bc3e683c747f936
http://hdl.handle.net/10281/280485
http://hdl.handle.net/10281/280485
Let$$( \mathcal {M},g ) $$(M,g)be ad-dimensional compact connected Riemannian manifold and let$$\{ \varphi _{m}\} _{m=0}^{+\infty }$${φm}m=0+∞be a complete sequence of orthonormal eigenfunctions of the Laplace–Beltrami operator on$$\mathcal {M}$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::310293708e05efdaacb1cae3489606d5
http://arxiv.org/abs/2003.09339
http://arxiv.org/abs/2003.09339
We consider the discrepancy of the integer lattice with respect to the collection of all translated copies of a dilated convex body having a finite number of flat, possibly non-smooth, points in its boundary. We estimate the $L^{p}$ norm of the discr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::834eb408c5803f9f82a60c36c76a4770
http://hdl.handle.net/10281/271072
http://hdl.handle.net/10281/271072
Autor:
Bianca Gariboldi
Let $\Omega \subset \mathbb{R}^{d}$ be a convex body with everywhere positive curvature except at the origin and with the boundary $\partial \Omega$ as the graph of the function $y=|x|^{\gamma}$ in a neighborhood of the origin with $\gamma \geq 2$. W
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6e8ceeaa962d3d316f50ec7f3443564f
Publikováno v:
The Journal of Geometric Analysis. 31:8925-8925
The original version of the article unfortunately contained an error in the acknowledgments section. The corrected Acknowledgements is given below.
We estimate the $L^{p}$ norms of the discrepancy between the volume and the number of integer points in $r\Omega-x$, a dilated by a factor $r$ and translated by a vector $x$ of a convex body $\Omega$ in $\mathbb{R}^{d}$ with smooth boundary with stri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3e79d3951471d143bd7381ddfe542c7a
http://arxiv.org/abs/1805.06520
http://arxiv.org/abs/1805.06520
We estimate some mixed $L^{p}\left( L^{2}\right) $ norms of the discrepancy between the volume and the number of integer points in $r\Omega-x$, a dilated by a factor $r$ and translated by a vector $x$ of a convex body $\Omega$ in $\mathbb{R}^{d}$, $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b75863cd0f0427a00e3f81687cd7216d