Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Biagiola, Matteo"'
Adaptive Random Testing (ART) has faced criticism, particularly for its computational inefficiency, as highlighted by Arcuri and Briand. Their analysis clarified how ART requires a quadratic number of distance computations as the number of test execu
Externí odkaz:
http://arxiv.org/abs/2410.17907
Autor:
Thomas, Deepak-George, Biagiola, Matteo, Humbatova, Nargiz, Wardat, Mohammad, Jahangirova, Gunel, Rajan, Hridesh, Tonella, Paolo
Reinforcement Learning (RL) is increasingly adopted to train agents that can deal with complex sequential tasks, such as driving an autonomous vehicle or controlling a humanoid robot. Correspondingly, novel approaches are needed to ensure that RL age
Externí odkaz:
http://arxiv.org/abs/2408.15150
In a recent study, Reinforcement Learning (RL) used in combination with many-objective search, has been shown to outperform alternative techniques (random search and many-objective search) for online testing of Deep Neural Network-enabled systems. Th
Externí odkaz:
http://arxiv.org/abs/2403.13729
Autor:
Biagiola, Matteo, Tonella, Paolo
Recent advances in Deep Neural Networks (DNNs) and sensor technologies are enabling autonomous driving systems (ADSs) with an ever-increasing level of autonomy. However, assessing their dependability remains a critical concern. State-of-the-art ADS t
Externí odkaz:
http://arxiv.org/abs/2307.10590
Autor:
Stocco, Andrea, Willi, Alexandra, Starace, Luigi Libero Lucio, Biagiola, Matteo, Tonella, Paolo
Web test automation techniques employ web crawlers to automatically produce a web app model that is used for test generation. Existing crawlers rely on app-specific, threshold-based, algorithms to assess state equivalence. Such algorithms are hard to
Externí odkaz:
http://arxiv.org/abs/2306.07400
Autor:
Biagiola, Matteo, Tonella, Paolo
Publikováno v:
Trans. Softw. Eng. Methodol. 33, 3, Article 73 (March 2024)
Deep Reinforcement Learning (DRL) has received a lot of attention from the research community in recent years. As the technology moves away from game playing to practical contexts, such as autonomous vehicles and robotics, it is crucial to evaluate t
Externí odkaz:
http://arxiv.org/abs/2305.12751
Publikováno v:
Empir Software Eng 29, 72 (2024)
Simulation-based testing represents an important step to ensure the reliability of autonomous driving software. In practice, when companies rely on third-party general-purpose simulators, either for in-house or outsourced testing, the generalizabilit
Externí odkaz:
http://arxiv.org/abs/2305.08060
E2E web test suites are prone to test dependencies due to the heterogeneous multi-tiered nature of modern web apps, which makes it difficult for developers to create isolated program states for each test case. In this paper, we present the first appr
Externí odkaz:
http://arxiv.org/abs/1905.00357
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.