Zobrazeno 1 - 10
of 288
pro vyhledávání: '"Bi Xiuli"'
Adversarial purification is a kind of defense technique that can defend various unseen adversarial attacks without modifying the victim classifier. Existing methods often depend on external generative models or cooperation between auxiliary functions
Externí odkaz:
http://arxiv.org/abs/2406.03143
Zero-shot Video Object Segmentation (ZSVOS) aims at segmenting the primary moving object without any human annotations. Mainstream solutions mainly focus on learning a single model on large-scale video datasets, which struggle to generalize to unseen
Externí odkaz:
http://arxiv.org/abs/2403.04258
As deep learning technology continues to evolve, the images yielded by generative models are becoming more and more realistic, triggering people to question the authenticity of images. Existing generated image detection methods detect visual artifact
Externí odkaz:
http://arxiv.org/abs/2311.00962
Autor:
Bi, Xiuli, Liang, Jiaming
In existing splicing forgery datasets, the insufficient semantic varieties of spliced regions cause a problem that trained detection models overfit semantic features rather than splicing traces. Meanwhile, because of the absence of a reasonable datas
Externí odkaz:
http://arxiv.org/abs/2310.10070
Publikováno v:
In Pattern Recognition November 2024 155
Autor:
Liu, Ziyi, Zhang, Hanbing, Hong, Guodong, Bi, Xiuli, Hu, Jun, Zhang, Tiancheng, An, Yachun, Guo, Na, Dong, Fengyue, Xiao, Yu, Li, Wen, Zhao, Xiaoxu, Chu, Bo, Guo, Siwei, Zhang, Xiaohan, Chai, Renjie, Fu, Xiaolong
Publikováno v:
In Molecular Therapy 1 May 2024 32(5):1387-1406
Local binary pattern (LBP) as a kind of local feature has shown its simplicity, easy implementation and strong discriminating power in image recognition. Although some LBP variants are specifically investigated for color image recognition, the color
Externí odkaz:
http://arxiv.org/abs/2012.06132
Recently, many detection methods based on convolutional neural networks (CNNs) have been proposed for image splicing forgery detection. Most of these detection methods focus on the local patches or local objects. In fact, image splicing forgery detec
Externí odkaz:
http://arxiv.org/abs/2012.01821
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.