Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Bhowmik, Mithun"'
Autor:
Bhowmik, Mithun, Dewan, Utsav
We prove $L^p-L^{p^\prime}$ boundedness of spectral projections and the resolvent of the Laplace-Beltrami operator on Damek-Ricci spaces with the explicit norms in terms of the spectral parameter. To prove these results we established pointwise sharp
Externí odkaz:
http://arxiv.org/abs/2306.06875
Autor:
Bhowmik, Mithun
We establish sharp Adams type inequalities on Sobolev spaces $W^{\alpha, n/\alpha}(X)$ of any fractional order $\alpha< n$ on Riemannian symmetric space $X$ of noncompact type with dimension $n$ and of arbitrary rank. We also establish sharp Hardy-Ad
Externí odkaz:
http://arxiv.org/abs/2106.08794
An $L^2$ version of the classical Denjoy-Carleman theorem regarding quasi-analytic functions was proved by P. Chernoff on $\mathbb R^n$ using iterates of the Laplacian. We give a simple proof of this theorem which generalizes the result on $\mathbb R
Externí odkaz:
http://arxiv.org/abs/2103.07667
Autor:
Bhowmik, Mithun, Pusti, Sanjoy
In this paper we study an extension problem for the Laplace-Beltrami operator on Riemannian symmetric spaces of noncompact type and use the solution to prove Hardy-type inequalities for fractional powers of the Laplace-Beltrami operator. Next, we stu
Externí odkaz:
http://arxiv.org/abs/2101.08460
Autor:
Bhowmik, Mithun
A classical result due to Levinson characterizes the existence of non-zero functions defined on a circle vanishing on an open subset of the circle in terms of the pointwise decay of their Fourier coefficients [13]. We prove certain analogue of this r
Externí odkaz:
http://arxiv.org/abs/1902.03583
An $L^2$ version of the celebrated Denjoy-Carleman theorem regarding quasi-analytic functions was proved by Chernoff \cite{CR} on $\mathbb R^d$ using iterates of the Laplacian. In $1934$ Ingham \cite{I} used the classical Denjoy-Carleman theorem to r
Externí odkaz:
http://arxiv.org/abs/1901.03196
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bhowmik, Mithun, Ray, Swagato K.
A classical result of N. Levinson characterizes the existence of a nonzero integrable function vanishing on a nonempty open subset of the real line in terms of the pointwise decay of its Fourier transform. We prove an analogue of this result for Riem
Externí odkaz:
http://arxiv.org/abs/1808.09710
Improved Ingham-type result on $\mathbb R^d$ and on connected, simply connected nilpotent Lie Groups
Autor:
Bhowmik, Mithun
In \cite{BRS} we have characterized the existance of a non zero function vanishing on an open set in terms of the decay of it's Fourier transform on the $d$-dimensional Euclidean space, the $d$-dimensional torus and on connected, simply connected two
Externí odkaz:
http://arxiv.org/abs/1806.06691
Autor:
Bhowmik, Mithun, Pusti, Sanjoy
Publikováno v:
In Journal of Functional Analysis 1 May 2022 282(9)