Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Bhattacharjee, Suvrajit"'
We discuss notions of almost complex, complex and K\"{a}hler structures in the realm of non-commutative geometry and investigate them for a class of finite dimensional spectral triples on the three-point space. We classify all the almost complex stru
Externí odkaz:
http://arxiv.org/abs/2405.07866
Let $G$ be a locally compact, $\sigma$-compact, Hausdorff groupoid and $A$ be a separable, $C_0(G^{(0)})$-nuclear, $G$-$C^*$-algebra. We prove the existence of quasi-invariant, completely positive and contractive lifts for equivariant, completely pos
Externí odkaz:
http://arxiv.org/abs/2405.07859
Let $G$ be a compact quantum group. We show that given a $G$-equivariant $\mathrm{C}^*$-correspondence $E$, the Pimsner algebra $\mathcal{O}_E$ can be naturally made into a $G$-$\mathrm{C}^*$-algebra. We also provide sufficient conditions under which
Externí odkaz:
http://arxiv.org/abs/2209.04708
Publikováno v:
Lett. Math. Phys. 113 (2023), no. 6, 116
We construct a braided analogue of the quantum permutation group and show that it is the universal braided compact quantum group acting on a finite space in the category of $\mathbb{Z}/N\mathbb{Z}$-$\textrm{C}^*$-algebras with a twisted monoidal stru
Externí odkaz:
http://arxiv.org/abs/2207.08153
We prove the existence of a universal braided compact quantum group acting on a graph $\mathrm{C}^*$-algebra in the category of $\mathbb{T}$-$\mathrm{C}^*$-algebras with a twisted monoidal structure, in the spirit of the seminal work of S. Wang. To a
Externí odkaz:
http://arxiv.org/abs/2201.09885
Publikováno v:
Journal of Geometry and Physics, vol 181, November 2022
We construct tame differential calculi coming from toral actions on a class of $\mathrm{C}^*$-algebras. Relying on the existence of a unique Levi-Civita connection on such a calculus, we prove a version of the Bianchi identity. A Gauss-Bonnet theorem
Externí odkaz:
http://arxiv.org/abs/2104.07570
For a finite-index $\mathrm{II}_1$ subfactor $N \subset M$, we prove the existence of a universal Hopf $\ast$-algebra (or, a discrete quantum group in the analytic language) acting on $M$ in a trace-preserving fashion and fixing $N$ pointwise. We cal
Externí odkaz:
http://arxiv.org/abs/2101.05575
We introduce Hopf algebroid covariance on Woronowicz's differential calculus. Using it, we develop quite a general framework of noncommutative complex geometry that subsumes the one in [2]. We present transverse complex and K\"ahler structures as exa
Externí odkaz:
http://arxiv.org/abs/1907.04673
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We prove that the q-deformed unitary group, i.e., $U_q(N)$, is the universal compact quantum group in the category of (compact) quantum groups which coact on the q-deformed odd sphere $S_q^{2N-1}$ leaving the space spanned by the natural set of gener
Externí odkaz:
http://arxiv.org/abs/1808.08698