Zobrazeno 1 - 10
of 1 958
pro vyhledávání: '"Bhat, B"'
Autor:
Della Croce, A., Aros, F. I., Vesperini, E., Dalessandro, E., Lanzoni, B., Ferraro, F. R., Bhat, B.
Context. Globular clusters (GCs) are suggested to host many stellar-mass black holes (BHs) at their centers, thus resulting in ideal testbeds for BH formation and retention theories. BHs are expected to play a major role in GC structural and dynamica
Externí odkaz:
http://arxiv.org/abs/2409.01400
Autor:
Bhat, B V Rajarama, Bala, Neeru
Let $A$ be an $m\times m$ complex matrix and let $\lambda _1, \lambda _2, \ldots , \lambda _m$ be the eigenvalues of $A$ arranged such that $|\lambda _1|\geq |\lambda _2|\geq \cdots \geq |\lambda _m|$ and for $n\geq 1,$ let $s^{(n)}_1\geq s^{(n)}_2\g
Externí odkaz:
http://arxiv.org/abs/2408.16994
The notions of joint and outer spectral radii are extended to the setting of Hilbert $C^*$-bimodules. A Rota-Strang type characterisation is proved for the joint spectral radius. In this general setting, an approximation result for the joint spectral
Externí odkaz:
http://arxiv.org/abs/2405.15009
Autor:
Bhat, B. V. Rajarama, Chongdar, Arghya
A problem of completing a linear map on C*-algebras to a completely positive map is analyzed. It is shown that whenever such a completion is feasible there exists a unique minimal completion. This theorem is used to show that under some very general
Externí odkaz:
http://arxiv.org/abs/2306.15952
The Weyl operators give a convenient basis of $M_n(\mathbb{C})$ which is also orthonormal with respect to the Hilbert-Schmidt inner product. The properties of such a basis can be generalised to the notion of a nice error basis(NEB), as introduced by
Externí odkaz:
http://arxiv.org/abs/2305.14274
Autor:
Bhat B., Sandeepa
Publikováno v:
International Space Law in the New Space Era: Principles and Challenges.
Externí odkaz:
https://doi.org/10.1093/9780198909415.003.0006
Autor:
Bhat B., Sandeepa
Publikováno v:
International Space Law in the New Space Era: Principles and Challenges.
Externí odkaz:
https://doi.org/10.1093/9780198909415.003.0001
Let $\mathcal{H}$ be a complex Hilbert space and let $\big\{A_{n}\big\}_{n\geq 1}$ be a sequence of bounded linear operators on $\mathcal{H}$. Then a bounded operator $B$ on a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ is said to be a dilation
Externí odkaz:
http://arxiv.org/abs/2302.13873