Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Bethany Lusch"'
Publikováno v:
Nature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
It is often advantageous to transform a strongly nonlinear system into a linear one in order to simplify its analysis for prediction and control. Here the authors combine dynamical systems with deep learning to identify these hard-to-find transformat
Externí odkaz:
https://doaj.org/article/d72f7d260a5d4c2a905fed768a9492b8
Autor:
Trevor David Rhone, Romakanta Bhattarai, Haralambos Gavras, Bethany Lusch, Misha Salim, Marios Mattheakis, Daniel T. Larson, Yoshiharu Krockenberger, Efthimios Kaxiras
Publikováno v:
Advanced Theory and Simulations.
Autor:
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, Rao Kotamarthi
Data assimilation (DA) in geophysical sciences remains the cornerstone of robust forecasts from numerical models. Indeed, DA plays a crucial role in the quality of numerical weather prediction and is a crucial building block that has allowed dramatic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f54a52b9534d4dca24711b4b6e45c899
https://gmd.copernicus.org/articles/15/3433/2022/
https://gmd.copernicus.org/articles/15/3433/2022/
Autor:
Shilpika Shilpika, Bethany Lusch, Murali Emani, Filippo Simini, Venkatram Vishwanath, Michael E. Papka, Kwan-Liu Ma
Publikováno v:
2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid).
Publikováno v:
Atomization and Sprays. 30:401-429
Autor:
Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch, Prasanna Balaprakash, Ian Foster, Rao Kotamarthi
Data assimilation (DA) in the geophysical sciences remains the cornerstone of robust forecasts from numerical models. Indeed, DA plays a crucial role in the quality of numerical weather prediction, and is a crucial building block that has allowed dra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66f719570b83fe24cfe763ec84134409
https://doi.org/10.5194/gmd-2021-415
https://doi.org/10.5194/gmd-2021-415
Autor:
Romain Egele, Romit Maulik, Krishnan Raghavan, Bethany Lusch, Isabelle Guyon, Prasanna Balaprakash
Publikováno v:
26TH International Conference on Pattern Recognition
26TH International Conference on Pattern Recognition, Aug 2022, Montréal, Canada. pp.1908-1914
26TH International Conference on Pattern Recognition, Aug 2022, Montréal, Canada. pp.1908-1914
International audience; Deep neural networks are powerful predictors for a variety of tasks. However, they do not capture uncertainty directly. Using neural network ensembles to quantify uncertainty is competitive with approaches based on Bayesian ne
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::51edfa6fba9cfae3dc581011d10483d6
http://arxiv.org/abs/2110.13511
http://arxiv.org/abs/2110.13511
Publikováno v:
ASME 2021 Internal Combustion Engine Division Fall Technical Conference.
Accurate prediction of injection profiles is a critical aspect of linking injector operation with engine performance and emissions. However, highly resolved injector simulations can take one to two weeks of wall-clock time, which is incompatible with
Publikováno v:
SAE Technical Paper Series.