Zobrazeno 1 - 10
of 13 555
pro vyhledávání: '"Besse P"'
Autor:
Kim, Do-Hyung
In this paper, we will show that one can use certain types of symplectic homology as an invariant of 3-dimensional Besse manifolds, which are contact manifolds admitting a periodic Reeb flow and hence allow Seifert fibration structure. For simplicity
Externí odkaz:
http://arxiv.org/abs/2405.20726
Autor:
Juan Besse, Luciano Uzal
Publikováno v:
Geograficando, Vol 20, Iss 1 (2024)
Revisión del Libro Zona sur: urdimbres de la acción colectiva popular en el Gran Buenos Aires (1974-1989) por J. Pinedo
Externí odkaz:
https://doaj.org/article/eb904e47706942e89bf22215f25db810
Autor:
Yun, Gabjin, Hwang, Seungsu
In this paper, we present the resolution of the Besse conjecture on a three dimensional compact manifold. We also prove the rigidity of the Miao-Tam critical metric on a three dimensional compact manifold with a smooth boundary.
Comment: There i
Comment: There i
Externí odkaz:
http://arxiv.org/abs/2208.10887
Autor:
Adelstein, Ian, Pallete, Franco Vargas
It is known that Blaschke manifolds (where injectivity radius equals diameter) are Besse manifolds (where all geodesics are closed). We show that Besse manifolds with sufficiently many diameter realizing directions are Blaschke. We also provide bound
Externí odkaz:
http://arxiv.org/abs/2201.03676
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kegel, Marc, Lange, Christian
Publikováno v:
Arnold Math. J., 7 (2021), 225-241
A Reeb flow on a contact manifold is called Besse if all its orbits are periodic, possibly with different periods. We characterize contact manifolds whose Reeb flows are Besse as principal S^1-orbibundles over integral symplectic orbifolds satisfying
Externí odkaz:
http://arxiv.org/abs/2003.10155
Autor:
Hwang, Seungsu, Yun, Gabjin
The critical point equation arises as a critical point of the total scalar curvature functional defined on the space of constant scalar curvature metrics of a unit volume on a compact manifold. In this equation, there exists a function $f$ on the man
Externí odkaz:
http://arxiv.org/abs/2103.15482
Autor:
Mazzucchelli, Marco, Radeschi, Marco
Publikováno v:
Transactions of the American Mathematical Society 376 (2023), no. 3, 2125-2153
We consider convex contact spheres $Y$ all of whose Reeb orbits are closed. Any such $Y$ admits a stratification by the periods of closed Reeb orbits. We show that $Y$ "resembles" a contact ellipsoid: any stratum of $Y$ is an integral homology sphere
Externí odkaz:
http://arxiv.org/abs/2012.05389
Publikováno v:
Annales de l'Institut Henri Poincar\'e C, Analyse Non Lin\'eaire 38 (2021), no. 3, 549-576
A closed contact manifold is called Besse when all its Reeb orbits are closed, and Zoll when they have the same minimal period. In this paper, we provide a characterization of Besse contact forms for convex contact spheres and Riemannian unit tangent
Externí odkaz:
http://arxiv.org/abs/1909.03310
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.