Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Berzig, Maher"'
Autor:
Berzig, Maher
Publikováno v:
J. Anal. 32, 2401-2414 (2024)
We introduce the concept of $b$-suprametric spaces and establish a fixed point result for mappings satisfying a nonlinear contraction in such spaces. The obtained result generalizes a fixed point theorem of Czerwik and a recent result of the author.<
Externí odkaz:
http://arxiv.org/abs/2304.08507
Autor:
Berzig Maher
Publikováno v:
Topological Algebra and its Applications, Vol 11, Iss 1, Pp 143-147 (2023)
We introduce the concept of generalized suprametric spaces, which subsumes some existing abstract metric spaces. Then, we show the existence of fixed points for maps satisfying nonlinear contractions involving either extended comparison or ρ\rho -su
Externí odkaz:
https://doaj.org/article/79ff30a102ef4e9191d76bb11539312d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Berzig, Maher
Publikováno v:
Complex Analysis & Operator Theory; Sep2024, Vol. 18 Issue 6, p1-26, 26p
Autor:
Berzig, Maher
Cette thèse présente une étude numérique des interactions hydrodynamiques entre des particules et une paroi plane dans un fluide Newtonien, dans l'hypothèse d'un petit nombre de Reynolds. Les équations de Stokes sont d'abord transformées sous
Publikováno v:
Open Mathematics, Vol 18, Iss 1, Pp 858-872 (2020)
Consider an ordered Banach space and f,gf,g two self-operators defined on the interior of its positive cone. In this article, we prove that the equation f(X)=g(X)f(X)=g(X) has a positive solution, whenever f is strictly α\alpha -concave g-monotone o
Externí odkaz:
https://doaj.org/article/374248caddf5433785cdd09644e5c986
Autor:
KEDIM, IMED1 i.kedim@psau.edu.sa, BERZIG, MAHER2 maher.berzig@gmail.com
Publikováno v:
Fixed Point Theory. Feb2023, Vol. 24 Issue 1, p265-281. 17p.
Autor:
Berzig, Maher
We introduce the concept of shifting distance functions, and we establish a new fixed point theorem which generalizes the Banach contraction principle. An example is provided to illustrate our result.
Comment: 6 pages
Comment: 6 pages
Externí odkaz:
http://arxiv.org/abs/1310.0995
Autor:
Berzig, Maher, Rus, Mircea-Dan
In this paper, we introduce the notion of $\alpha$--contractive mapping of Meir--Keeler type in complete metric spaces and prove new theorems which assure the existence, uniqueness and iterative approximation of the fixed point for this type of contr
Externí odkaz:
http://arxiv.org/abs/1303.5798
Existence of positive solutions for generalized Lyapunov equations via a coupled fixed point theorem
Autor:
Berzig, Maher, Samet, Bessem
Publikováno v:
Filomat. 29(8)(2015)1831-1837
We consider the generalized continuous-time Lyapunov equation: $$ A^*XB + B^*XA =-Q, $$ where $Q$ is an $N\times N$ Hermitian positive definite matrix and $A,B$ are arbitrary $N\times N$ matrices. Under some conditions, using the coupled fixed point
Externí odkaz:
http://arxiv.org/abs/1203.1821