Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Bertrand Guenin"'
Publikováno v:
Mathematical Programming.
A vector is \emph{dyadic} if each of its entries is a dyadic rational number, i.e. of the form $\frac{a}{2^k}$ for some integers $a,k$ with $k\geq 0$. A linear system $Ax\leq b$ with integral data is \emph{totally dual dyadic} if whenever $\min\{b^\t
Autor:
Bertrand Guenin, Cheolwon Heo
Publikováno v:
Mathematical Programming.
Autor:
Bertrand Guenin, Cheolwon Heo
Publikováno v:
Mathematical Programming.
Autor:
Bertrand Guenin, Cheolwon Heo
Publikováno v:
Mathematical Programming.
Publikováno v:
Integer Programming and Combinatorial Optimization ISBN: 9783031069000
A vector is dyadic if each of its entries is a dyadic rational number, i.e. of the form a2k for some integers a, k with k≥ 0. A linear system Ax≤ b with integral data is totally dual dyadic if whenever min { b⊤y: A⊤y= w, y≥ 0} for w integra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d4849437c2ea54dd4702f9faadc4133
http://eprints.lse.ac.uk/115635/
http://eprints.lse.ac.uk/115635/
A vector is dyadic if each of its entries is a dyadic rational number, i.e., an integer multiple of 1 2k for some nonnegative integer k. We prove that every clean clutter with a covering number of at least two has a dyadic fractional packing of value
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1a934e1f227eb79ed51cf3e7fdbd852e
http://eprints.lse.ac.uk/113010/
http://eprints.lse.ac.uk/113010/
Autor:
Bertrand Guenin, Zouhaier Ferchiou
Publikováno v:
Combinatorica. 40:805-837
In his PhD thesis Shih characterized the relationship between two graphs, where the cycle space of the first is included in the cycle space of the second and the dimension of the cycle spaces differ by one [7]. However, this result never appeared in
Autor:
Cheolwon Heo, Bertrand Guenin
Publikováno v:
Integer Programming and Combinatorial Optimization ISBN: 9783030457709
IPCO
IPCO
Even-cycle matroids are elementary lifts of graphic matroids. Even-cut matroids are elementary lifts of cographic matroids. We give a polynomial time algorithm to check if a binary matroid is an even-cycle matroid. We also give a polynomial time algo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a18d2c48e2e82f48bd657eacfcdce7f8
https://doi.org/10.1007/978-3-030-45771-6_15
https://doi.org/10.1007/978-3-030-45771-6_15
Autor:
Ahmad Abdi, Bertrand Guenin
Let $$\mathbb{F}$$ be a binary clutter. We prove that if $$\mathbb{F}$$ is non-ideal, then either $$\mathbb{F}$$ or its blocker $$b(\mathbb{F})$$ has one of $$\mathbb{L}_7,\mathbb{O}_5,\mathbb{LC}_7$$ as a minor. $$\mathbb{L}_7$$ is the non-ideal clu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4bdd5353512e73f5f6eccc76014d8116
http://eprints.lse.ac.uk/101842/
http://eprints.lse.ac.uk/101842/
Autor:
Bertrand Guenin, Ahmad Abdi
It is proved that the lines of the Fano plane and the odd circuits of K 5 constitute the only minimally non-ideal binary clutters that have a triangle.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4204bfb227bc46ec58c2484f4d817746
http://eprints.lse.ac.uk/101841/
http://eprints.lse.ac.uk/101841/