Zobrazeno 1 - 10
of 82
pro vyhledávání: '"Bertram, Aaron"'
We study Le Potier's strange duality on del Pezzo surfaces using quot schemes to construct independent sections of theta line bundles on moduli spaces of sheaves, one of which is the Hilbert scheme of n points. For n at most 7, we use multiple point
Externí odkaz:
http://arxiv.org/abs/1610.04185
Autor:
Bertram, Aaron, Martinez, Cristian
We prove that the "Thaddeus flips" of $L$-twisted sheaves constructed by Matsuki and Wentworth can be obtained via Bridgeland wall-crossing. Similarly, we realize the change of polarization for moduli spaces of 1-dimensional Gieseker semistable sheav
Externí odkaz:
http://arxiv.org/abs/1505.07091
Autor:
Bertram, Aaron
This thesis is missing page 123, no other copy of the thesis has this page. -Digitization Centre
This research provides the first detailed study of the coastal geomorphology of Playa Guiones, Guanacaste Province Costa Rica. Playa Guiones is loca
This research provides the first detailed study of the coastal geomorphology of Playa Guiones, Guanacaste Province Costa Rica. Playa Guiones is loca
Externí odkaz:
http://hdl.handle.net/11375/24446
We describe a close relation between wall crossings in the birational geometry of moduli space of Gieseker stable sheaves $M_H(v)$ on $\bb{P}^2$ and mini-wall crossings in the stability manifold $Stab(D^b(\bb{P}^2))$.
Comment: 33 pages, comments
Comment: 33 pages, comments
Externí odkaz:
http://arxiv.org/abs/1301.2011
We study rational double Hurwitz cycles, i.e. loci of marked rational stable curves admitting a map to the projective line with assigned ramification profiles over two fixed branch points. Generalizing the phenomenon observed for double Hurwitz numbe
Externí odkaz:
http://arxiv.org/abs/1209.5789
In this paper, we study the birational geometry of the Hilbert scheme of n points on P^2. We discuss the stable base locus decomposition of the effective cone and the corresponding birational models. We give modular interpretations to the models in t
Externí odkaz:
http://arxiv.org/abs/1203.0316
We apply a conjectured inequality on third chern classes of stable two-term complexes on threefolds to Fujita's conjecture. More precisely, the inequality is shown to imply a Reider-type theorem in dimension three which in turn implies that K_X + 6L
Externí odkaz:
http://arxiv.org/abs/1106.3430
Autor:
Arcara, Daniele, Bertram, Aaron
Bridgeland stability conditions allow for a new generalization of Thaddeus pairs to surfaces and a new interpretation of Reider's theorem as a consequence of "Schur's lemma" for stable objects (Hom(E,F) = 0 if E,F are stable objects and the slope of
Externí odkaz:
http://arxiv.org/abs/0904.3500
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We give a natural family of Bridgeland stability conditions on the derived category of a smooth projective complex surface S and describe ``wall-crossing behavior'' for objects with the same invariants as $\cO_C(H)$ when H generates Pic(S) and $C \in
Externí odkaz:
http://arxiv.org/abs/0708.2247