Zobrazeno 1 - 10
of 517
pro vyhledávání: '"Bertola M"'
Publikováno v:
J. Math. Phys. 64, 083502 (2023)
The Hamiltonian approach to isomonodromic deformation systems is extended to include generic rational covariant derivative operators on the Riemann sphere with irregular singularities of arbitrary Poincar\'e rank. The space of rational connections wi
Externí odkaz:
http://arxiv.org/abs/2212.06880
In this paper we study the small-$\lambda$ spectral asymptotics of an integral operator $\mathscr{K}$ defined on two multi-intervals $J$ and $E$, when the multi-intervals touch each other (but their interiors are disjoint). The operator $\mathscr{K}$
Externí odkaz:
http://arxiv.org/abs/2210.10002
Publikováno v:
Ann. H. Poincar\'e, 23, 4521- 4554 (2022)
We extend the approach to ${\tau}$-functions as Widom constants developed by Cafasso, Gavrylenko and Lisovyy to orthogonal loop group Drinfeld-Sokolov hierarchies and isomonodromic deformations systems. The combinatorial expansion of the ${\tau}$-fun
Externí odkaz:
http://arxiv.org/abs/2112.12666
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bertola, M., Harnad, J.
Publikováno v:
J. Math. Phys. 60, 103504 (2019)
The quantum spectral curve equation associated to KP $\tau$-functions of hypergeometric type serving as generating functions for rationally weighted Hurwitz numbers is solved by generalized hypergeometric series. The basis elements spanning the corre
Externí odkaz:
http://arxiv.org/abs/1904.03770
Autor:
Bertola, M., Korotkin, D.
We revisit symplectic properties of the monodromy map for Fuchsian systems on the Riemann sphere. We extend previous results of Hitchin, Alekseev-Malkin and Korotkin-Samtleben where it was shown that the monodromy map is a Poisson morphism between th
Externí odkaz:
http://arxiv.org/abs/1903.09197
Publikováno v:
J. Math. Phys. 61, 013506 (2020)
Multicurrent correlators associated to KP $\tau$-functions of hypergeometric type are used as generating functions for weighted Hurwitz numbers. These are expressed as formal Taylor series and used to compute generic, simple, rational and quantum wei
Externí odkaz:
http://arxiv.org/abs/1901.10038
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bertola, M., Korotkin, D.
The principal goal of the paper is to apply the approach inspired by the theory of integrable systems to construct explicit sections of line bundles over the combinatorial model of the moduli space of pointed Riemann surfaces based on Jenkins-Strebel
Externí odkaz:
http://arxiv.org/abs/1804.02495
Autor:
Bertola, M., Korotkin, D.
Publikováno v:
In Physica D: Nonlinear Phenomena November 2022 439