Zobrazeno 1 - 10
of 114
pro vyhledávání: '"Berthelot, Pierre"'
Autor:
Berthelot, Pierre
Comme son titre l’indique, ce mémoire a pour objet une réflexion sur la mise en récit d’un personnage historique. Afin d’explorer l’évolution des points de vue sur un personnage historique (Maurice Duplessis) et l’époque à laquelle il
Externí odkaz:
http://hdl.handle.net/1866/11095
Autor:
Berthelot, Pierre
Publikováno v:
Executive Intelligence Review. 6/14/2024, Vol. 51 Issue 24, p27-29. 3p.
Autor:
Berthelot, Pierre
Let $k$ be a perfect field of characteristic $p > 0$, $W_n = W_n(k)$. For separated $k$-schemes of finite type, we explain how rigid cohomology with compact supports can be computed as the cohomology of certain de Rham-Witt complexes with coefficient
Externí odkaz:
http://arxiv.org/abs/1205.4702
Let $R$ be a discrete valuation ring of mixed characteristics $(0,p)$, with finite residue field $k$ and fraction field $K$, let $k'$ be a finite extension of $k$, and let $X$ be a regular, proper and flat $R$-scheme, with generic fibre $X_K$ and spe
Externí odkaz:
http://arxiv.org/abs/1009.0178
Autor:
Berthelot, Pierre
If $X$ is a smooth scheme over a perfect field of characteristic $p$, and if $\sD_X$ is the sheaf of differential operators on $X$ [EGAIV], it is well known that giving an action of $\sD_X$ on an $\sO_X$-module $\sE$ is equivalent to giving an infini
Externí odkaz:
http://arxiv.org/abs/1003.2571
Over a perfect field $k$ of characteristic $p > 0$, we construct a ``Witt vector cohomology with compact supports'' for separated $k$-schemes of finite type, extending (after tensorisation with $\mathbb{Q}$) the classical theory for proper $k$-scheme
Externí odkaz:
http://arxiv.org/abs/math/0510349