Zobrazeno 1 - 10
of 13 807
pro vyhledávání: '"Bershadsky A"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The Bershadsky--Polyakov algebras are the subregular quantum hamiltonian reductions of the affine vertex operator algebras associated with $\mathfrak{sl}_3$. In arXiv:2007.00396 [math.QA], we realised these algebras in terms of the regular reduction,
Externí odkaz:
http://arxiv.org/abs/2303.03713
Autor:
Fehily, Zachary, Ridout, David
The Bershadsky-Polyakov algebras are the original examples of nonregular W-algebras, obtained from the affine vertex operator algebras associated with $\mathfrak{sl}_3$ by quantum hamiltonian reduction. In [arXiv:2007.03917], we explored the represen
Externí odkaz:
http://arxiv.org/abs/2110.10336
The Bershadsky-Polyakov algebras are the minimal quantum hamiltonian reductions of the affine vertex algebras associated to $\mathfrak{sl}_3$ and their simple quotients have a long history of applications in conformal field theory and string theory.
Externí odkaz:
http://arxiv.org/abs/2007.03917
Autor:
Adamovic, Drazen, Kontrec, Ana
We study the simple Bershadsky-Polyakov algebra $\mathcal W_k = \mathcal{W}_k(sl_3,f_{\theta})$ at positive integer levels and classify their irreducible modules. In this way we confirm the conjecture from arXiv:1910.13781. Next, we study the case $k
Externí odkaz:
http://arxiv.org/abs/2011.10021
We present a realisation of the universal/simple Bershadsky--Polyakov vertex algebras as subalgebras of the tensor product of the universal/simple Zamolodchikov vertex algebras and an isotropic lattice vertex algebra. This generalises the realisation
Externí odkaz:
http://arxiv.org/abs/2007.00396
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Adamovic, Drazen, Kontrec, Ana
We study the representation theory of the Bershadsky-Polyakov algebra $\mathcal W_k = \mathcal{W}_k(sl_3,f_{\theta})$. In particular, Zhu algebra of $\mathcal W_k$ is isomorphic to a certain quotient of the Smith algebra, after changing the Virasoro
Externí odkaz:
http://arxiv.org/abs/1910.13781
We consider two dimensional conformal field theory (CFT) with large central charge c in an excited state obtained by the insertion of an operator \Phi with large dimension \Delta_\Phi ~ O(c) at spatial infinities in the thermal state. We argue that c
Externí odkaz:
http://arxiv.org/abs/1906.00667
Autor:
Fehily, Zachary1 (AUTHOR) zfehily@student.unimelb.edu.au, Ridout, David1 (AUTHOR)
Publikováno v:
Letters in Mathematical Physics. Jun2022, Vol. 112 Issue 3, p1-16. 16p.