Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Berry de Bruijn"'
Autor:
Ian J. Saldanha, Christopher H. Schmid, Joseph Lau, Kay Dickersin, Jesse A. Berlin, Jens Jap, Bryant T. Smith, Simona Carini, Wiley Chan, Berry De Bruijn, Byron C. Wallace, Susan M. Hutfless, Ida Sim, M. Hassan Murad, Sandra A. Walsh, Elizabeth J. Whamond, Tianjing Li
Publikováno v:
Systematic Reviews, Vol 5, Iss 1, Pp 1-11 (2016)
Abstract Background Data abstraction, a critical systematic review step, is time-consuming and prone to errors. Current standards for approaches to data abstraction rest on a weak evidence base. We developed the Data Abstraction Assistant (DAA), a no
Externí odkaz:
https://doaj.org/article/3b73b29a64e8480db248cf2deb722103
Autor:
Dave, Carter, Marta, Stojanovic, Philip, Hachey, Kevin, Fournier, Simon, Rodier, Yunli, Wang, Berry, De Bruijn
Publikováno v:
Studies in health technology and informatics. 270
Global public health surveillance relies on reporting structures and transmission of trustworthy health reports. But in practice, these processes may not always be fast enough, or are hindered by procedural, technical, or political barriers. GPHIN, t
Publikováno v:
BioNLP
When comparing entities extracted by a medical entity recognition system with gold standard annotations over a test set, two types of mismatches might occur, label mismatch or span mismatch. Here we focus on span mismatch and show that its severity c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7f6d3287273727a81294076bd689790c
Autor:
Berry de Bruijn, Khaldoun Zine El Abidine, Isar Nejadgholi, Astha LaPlante, Muqun Li, Kathleen C. Fraser
Publikováno v:
LOUHI@EMNLP
Entity recognition is a critical first step to a number of clinical NLP applications, such as entity linking and relation extraction. We present the first attempt to apply state-of-the-art entity recognition approaches on a newly released dataset, Me
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::19cb42618effc6ace694a9d09eb3e0bb
https://nrc-publications.canada.ca/eng/view/object/?id=de89b0eb-2023-4644-b6e1-a2f11d56a678
https://nrc-publications.canada.ca/eng/view/object/?id=de89b0eb-2023-4644-b6e1-a2f11d56a678
Autor:
Berry de Bruijn, Joseph K. Canner, Simona Carini, Christopher H. Schmid, Tianjing Li, Kay Dickersin, Wiley Chan, Jesse A. Berlin, Ian J. Saldanha, Bryant T Smith, Elizabeth J. Whamond, Vernal Branch, Byron C. Wallace, Susan Hutfless, Joseph Lau, Ida Sim, Sandra A. Walsh, M. Hassan Murad, Jens Jap
Publikováno v:
Journal of clinical epidemiology. 115
Objectives Data Abstraction Assistant (DAA) is a software for linking items abstracted into a data collection form for a systematic review to their locations in a study report. We conducted a randomized cross-over trial that compared DAA-facilitated
Publikováno v:
Journal of Clinical Epidemiology. 78:108-115
Objectives To maximize the proportion of relevant studies identified for inclusion in systematic reviews (recall), complex time-consuming Boolean searches across multiple databases are common. Although MEDLINE provides excellent coverage of health sc
Autor:
Jasper Friedrichs, Abeed Sarker, Filip Ginter, Maksim Belousov, Saif M. Mohammad, Ramakanth Kavuluru, Debanjan Mahata, Berry de Bruijn, Tung Tran, Anthony Rios, Graciela Gonzalez-Hernandez, Sifei Han, Kai Hakala, Svetlana Kiritchenko, Goran Nenadic, Farrokh Mehryary
Publikováno v:
Sarkerb, A, Belousov, M, Friedrichs, J, Hakala, K, Kiritchenko, S, Mehryary, F, Han, S, Tran, T, Rios, A, Kavuluru, R, de Bruijn, B, Ginter, F, Mahata, D, Mohammad, S M, Nenadic, G & Gonzalez-Hernandez, G 2018, ' Data and systems for medication-related text classification and concept normalization from Twitter: Insights from the Social Media Mining for Health (SMM4H) 2017 shared task ', Journal of the American Medical Informatics Association, vol. 25, no. 10, pp. 1274-1283 . https://doi.org/10.1093/jamia/ocy114
Journal of the American Medical Informatics Association : JAMIA
Journal of the American Medical Informatics Association : JAMIA
Objective: We executed the Social Media Mining for Health (SMM4H) 2017 shared tasks to enable the community-driven development and large-scale evaluation of automatic text processing methods for the classification and normalization of health-related
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f14d401f0df0cb9ceb28081a39ad4c33
https://www.research.manchester.ac.uk/portal/en/publications/data-and-systems-for-medicationrelated-text-classification-and-concept-normalization-from-twitter-insights-from-the-social-media-mining-for-health-smm4h-2017-shared-task(92eccc9d-0d02-49c4-b0b9-7fa138a2ca7d).html
https://www.research.manchester.ac.uk/portal/en/publications/data-and-systems-for-medicationrelated-text-classification-and-concept-normalization-from-twitter-insights-from-the-social-media-mining-for-health-smm4h-2017-shared-task(92eccc9d-0d02-49c4-b0b9-7fa138a2ca7d).html
Publikováno v:
Online Journal of Public Health Informatics
Objective: To rebuild the software that underpins the Global Public Health Intelligence Network using modern natural language processing techniques to support recent and future improvements in situational awareness capability. Introduction: The Globa
Publikováno v:
Journal of Biomedical Informatics. 46(2):275-285
This paper addresses an information-extraction problem that aims to identify semantic relations among medical concepts (problems, tests, and treatments) in clinical text. The objectives of the paper are twofold. First, we extend an earlier one-page d
Publikováno v:
Journal of the American Medical Informatics Association : JAMIA
Objective: An analysis of the timing of events is critical for a deeper understanding of the course of events within a patient record. The 2012 i2b2 NLP challenge focused on the extraction of temporal relationships between concepts within textual hos