Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Bernini Federico"'
Autor:
Bernini, Federico, d'Avenia, Pietro
We introduce a fractional magnetic pseudorelativistic operator for a general fractional order $s\in(0,1)$. First we define a suitable functional setting and we prove some fundamental properties. Then we show the behavior of the operator as $s \nearro
Externí odkaz:
http://arxiv.org/abs/2410.22426
We show an abstract critical point theorem about existence of infinitely many critical orbits to strongly indefinite functionals with sign-changing nonlinear part defined on a dislocation space with a discrete group action. We apply the abstract resu
Externí odkaz:
http://arxiv.org/abs/2410.13315
Autor:
Bernini Federico, Mugnai Dimitri
Publikováno v:
Advances in Nonlinear Analysis, Vol 9, Iss 1, Pp 850-865 (2019)
We study the existence of radially symmetric solutions for a nonlinear planar Schrödinger-Poisson system in presence of a superlinear reaction term which doesn’t satisfy the Ambrosetti-Rabinowitz condition. The system is re-written as a nonlinear
Externí odkaz:
https://doaj.org/article/a627cbd8ccef4d80bb61a1ff5f38ccc1
In the paper, we utilize the recent variational, abstract theorem to show the existence of homoclinic solutions to the Hamiltonian system $$ \dot{z} = J D_z H(z, t), \quad t \in \mathbb{R}, $$ where the Hamiltonian $H : \mathbb{R}^{2N} \times \mathbb
Externí odkaz:
http://arxiv.org/abs/2405.20908
We provide an existence result for a Schr\"odinger-Poisson system in gradient form, set in the whole plane, in the case of zero mass. Since the setting is limiting for the Sobolev embedding, we admit nonlinearities with subcritical or critical growth
Externí odkaz:
http://arxiv.org/abs/2405.03871
The aim of this work is to prove a compact embedding for a weighted fractional Sobolev spaces. As an application, we use this embedding to prove, via variational methods, the existence of solutions for the following Schr\"odinger equation $$ (-\Delta
Externí odkaz:
http://arxiv.org/abs/2308.02311
Publikováno v:
Calc. Var. Partial Differential Equations, Vol. 61, Article number: 182 (2022)
We show the linking-type result which allows us to study strongly indefinite problems with sign-changing nonlinearities. We apply the abstract theory to the singular Schr\"{o}dinger equation $$ -\Delta u + V(x)u + \frac{a}{r^2} u = f(u) - \lambda g(u
Externí odkaz:
http://arxiv.org/abs/2109.12310
Publikováno v:
Nonlinear Analysis, Vol. 217 (2022), 112738
We are interested in the general Choquard equation \begin{multline*} \sqrt{\strut -\Delta + m^2} \ u - mu + V(x)u - \frac{\mu}{|x|} u = \left( \int_{\mathbb{R}^N} \frac{F(y,u(y))}{|x-y|^{N-\alpha}} \, dy \right) f(x,u) - K (x) |u|^{q-2}u \end{multlin
Externí odkaz:
http://arxiv.org/abs/2102.02168
Publikováno v:
Economía, 2018 Apr 01. 18(2), 59-85.
Externí odkaz:
https://www.jstor.org/stable/90021091
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.