Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Bernd Ammann"'
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2004, Iss 4, Pp 161-193 (2004)
We study a generalization of the geodesic spray and give conditions for noncomapct manifolds with a Lie structure at infinity to have positive injectivity radius. We also prove that the geometric operators are generated by the given Lie algebra of ve
Externí odkaz:
https://doaj.org/article/211d354c87844b3a969664e44168cccf
A regularity result for the bound states of N-body Schrödinger operators: blow-ups and Lie manifolds
We prove regularity estimates in weighted Sobolev spaces for the $L^2$-eigenfunctions of Schr\"odinger type operators whose potentials have inverse square singularities and uniform radial limits at infinity. In particular, the usual $N$-body Hamilton
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a57fbd0e0f852fe96872140e24d22ebd
https://epub.uni-regensburg.de/53839/
https://epub.uni-regensburg.de/53839/
Autor:
Bernd Ammann, Jonathan Glöckle
Publikováno v:
Perspectives in Scalar Curvature ISBN: 9789811249990
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::090416268476bb56ec699edbcf05ae60
https://doi.org/10.1142/9789811273230_0016
https://doi.org/10.1142/9789811273230_0016
Publikováno v:
Mathematical News / Mathematische Nachrichten
Mathematical News / Mathematische Nachrichten, Wiley-VCH Verlag, 2019, ⟨10.1002/mana.201700408⟩
Mathematical News / Mathematische Nachrichten, Wiley-VCH Verlag, 2019, ⟨10.1002/mana.201700408⟩
Let $M$ be a Riemannian manifold with a smooth boundary. The main question we address in this article is: "When is the Laplace-Beltrami operator $\Delta\colon H^{k+1}(M)\cap H^1_0(M) \to H^{k-1}(M)$, $k\in \mathbb{N}_0$, invertible?" We consider also
Publikováno v:
Oberwolfach Reports. 14:2223-2298
Autor:
Raphael Zentner, Bernd Ammann
Publikováno v:
Mitteilungen der Deutschen Mathematiker-Vereinigung. 26:67-69
Zusammenfassung In Frankreich in aller Munde, in Deutschland noch wenig beachtet. Für junge Mathematiker bietet sie neue Berufsfelder, unser tägliches Leben wird sie verändern, viele technische Bereiche werden durch sie revolutioniert: die künstl
We provide new insight into the analysis of N-body problems by studying a compactification $M_N$ of $\mathbb{R}^{3N}$ that is compatible with the analytic properties of the $N$-body Hamiltonian $H_N$. We show that our compactification coincides with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d984c1e9c97fcdc9a2153e6e0124f4d4
http://arxiv.org/abs/1910.10656
http://arxiv.org/abs/1910.10656
Autor:
Bernd Ammann, Nadine Große
Publikováno v:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 87:165-180
We prove a positive mass theorem for some noncompact spin manifolds that are asymptotic to products of hyperbolic space with a compact manifold. As a conclusion we show the Yamabe inequality for some noncompact manifolds which are important to unders
Publikováno v:
Comptes Rendus. Mathématique
Comptes Rendus. Mathématique, Académie des sciences (Paris), 2019, 357 (6), pp.487-493. ⟨10.1016/j.crma.2019.04.009⟩
Comptes Rendus. Mathématique, Académie des sciences (Paris), 2019, 357 (6), pp.487-493. ⟨10.1016/j.crma.2019.04.009⟩
We prove well-posedness and regularity results for elliptic boundary value problems on certain domains with a smooth set of singular points. Our class of domains contains the class of domains with isolated oscillating conical singularities, and hence
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c490192e2f51bb7eba82933b0871dd07
http://arxiv.org/abs/1812.09898
http://arxiv.org/abs/1812.09898
Autor:
Bernd Ammann, Nicolas Ginoux
Publikováno v:
Letters in Mathematical Physics
Letters in Mathematical Physics, Springer Verlag, 2019, 109 (5), p 1205-1218. ⟨10.1007/s11005-018-1134-4⟩
Letters in Mathematical Physics, Springer Verlag, 2019, 109 (5), p 1205-1218. ⟨10.1007/s11005-018-1134-4⟩
We discuss a method to construct Dirac-harmonic maps developed by J.~Jost, X.~Mo and M.~Zhu in J.~Jost, X.~Mo, M.~Zhu, \emph{Some explicit constructions of Dirac-harmonic maps}, J. Geom. Phys. \textbf{59} (2009), no. 11, 1512--1527.The method uses ha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ea1c19e1f46a546988732cca6bde86a