Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Bernardo Vecchia Stein"'
Autor:
Pedro Ribeiro Mendes Júnior, Otavio A. B. Penatti, Anderson Rocha, Daniel Vatanabe Pazinato, Waldir Rodrigues De Almeida, Bernardo Vecchia Stein, Rafael de Oliveira Werneck, Ricardo da Silva Torres
Publikováno v:
Future Generation Computer Systems. 78:59-76
In this work, we propose Kuaa, a workflow-based framework that can be used for designing, deploying, and executing machine learning experiments in an automated fashion. This framework is able to provide a standardized environment for exploratory anal
Autor:
Bernardo Vecchia Stein, Anderson Rocha, Daniel Vatanabe Pazinato, Ricardo da Silva Torres, Rafael de Oliveira Werneck, Waldir Rodrigues De Almeida, Otavio A. B. Penatti, Roberto Souza, Pedro Ribeiro Mendes Júnior
Publikováno v:
Machine Learning. 106:359-386
In this paper, we propose a novel multiclass classifier for the open-set recognition scenario. This scenario is the one in which there are no a priori training samples for some classes that might appear during testing. Usually, many applications are
Autor:
Ricardo da Silva Torres, Anderson Rocha, Rafael de Oliveira Werneck, Daniel Vatanabe Pazinato, Otavio A. B. Penatti, Waldir Rodrigues De Almeida, Bernardo Vecchia Stein, Pedro Ribeiro Mendes Júnior
Publikováno v:
Computers in Biology and Medicine. 66:66-81
In this paper, we explore mid-level image representations for real-time heart view plane classification of 2D echocardiogram ultrasound images. The proposed representations rely on bags of visual words, successfully used by the computer vision commun
Autor:
Otavio A. B. Penatti, Fabio H. Menezes, Anderson Rocha, Daniel Vatanabe Pazinato, Pedro Ribeiro Mendes Júnior, Rafael de Oliveira Werneck, Waldir Rodrigues De Almeida, Bernardo Vecchia Stein, Ricardo da Silva Torres
Publikováno v:
IEEE journal of biomedical and health informatics. 20(1)
Background: Pixel-level tissue classification for ultrasound images, commonly applied to carotid images, is usually based on defining thresholds for the isolated pixel values. Ranges of pixel values are defined for the classification of each tissue.