Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Bernardo Nipoti"'
Publikováno v:
Journal of Statistical Software, Vol 100, Pp 1-33 (2021)
BNPmix is an R package for Bayesian nonparametric multivariate density estimation, clustering, and regression, using Pitman-Yor mixture models, a flexible and robust generalization of the popular class of Dirichlet process mixture models. A variety o
Externí odkaz:
https://doaj.org/article/d021f452c6ef4d469e2932877afd7104
Publikováno v:
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-8 (2020)
Abstract We prove a monotonicity property of the Hurwitz zeta function which, in turn, translates into a chain of inequalities for polygamma functions of different orders. We provide a probabilistic interpretation of our result by exploiting a connec
Externí odkaz:
https://doaj.org/article/a59f743d6f8e4380a788f32959c10b5d
Nonparametric mixture models based on the Pitman–Yor process represent a flexible tool for density estimation and clustering. Natural generalization of the popular class of Dirichlet process mixture models, they allow for more robust inference on t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0395a3559ebb46715e52009d4ffc0c62
https://hdl.handle.net/10281/396630
https://hdl.handle.net/10281/396630
Taking into account axial symmetry in the covariance function of a Gaussian random field is essential when the purpose is modelling data defined over a large portion of the sphere representing our planet. Axially symmetric covariance functions admit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f83be850774867191a3187157dff8d6
https://hdl.handle.net/10281/396631
https://hdl.handle.net/10281/396631
Publikováno v:
Computational Statistics
Computational Statistics, Springer Verlag, 2021, 36, pp.577-601. ⟨10.1007/s00180-020-01013-y⟩
Computational Statistics, 2021, 36, pp.577-601. ⟨10.1007/s00180-020-01013-y⟩
Computational Statistics, Springer Verlag, 2021, 36, pp.577-601. ⟨10.1007/s00180-020-01013-y⟩
Computational Statistics, 2021, 36, pp.577-601. ⟨10.1007/s00180-020-01013-y⟩
Location-scale Dirichlet process mixtures of Gaussians (DPM-G) have proved extremely useful in dealing with density estimation and clustering problems in a wide range of domains. Motivated by an astronomical application, in this work we address the r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8cdc920576c4af46ba463442803204fc
https://hal.archives-ouvertes.fr/hal-01950652
https://hal.archives-ouvertes.fr/hal-01950652
Discrete Bayesian nonparametric models whose expectation is a convex linear combination of a point mass at some point of the support and a diffuse probability distribution allow to incorporate strong prior information, while still being extremely fle
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0f052944e1b77c4b5f078a2c1ced516a
http://hdl.handle.net/10281/344093
http://hdl.handle.net/10281/344093
The stratified proportional hazards model represents a simple solution to account for heterogeneity within the data while keeping the multiplicative effect on the hazard function. Strata are typically defined a priori by resorting to the values taken
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::26fbb70e0a9c1664af3e307f65e1b2c6
Publikováno v:
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-8 (2020)
We prove a monotonicity property of the Hurwitz zeta function which, in turn, translates into a chain of inequalities for polygamma functions of different orders. We provide a probabilistic interpretation of our result by exploiting a connection betw
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e58912a15411acd869d2c6dc17cdfa51
http://hdl.handle.net/10281/272659
http://hdl.handle.net/10281/272659
Publikováno v:
Scandinavian Journal of Statistics. 45:1016-1035
A standard approach for dealing with unobserved heterogeneity and clustered time‐to‐event data within the proportional hazards (PH) context has been the introduction of a cluster‐specific random effect (frailty), common to subjects within the s