Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Bernardini, Matheus"'
We study the so-called atomic GNS, which naturally extends the concept of atomic numerical semigroup. We introduce the notion of corner special gap and we characterize the class of atomic GNS in terms of the cardinality of the set of corner special g
Externí odkaz:
http://arxiv.org/abs/2306.13506
In this paper, we bring the terminology of the Kunz coordinates of numerical semigroups to gapsets and we generalize this concept to $m$-extensions. It allows us to identify gapsets and, in general, $m$-extensions with tilings of boards. As a consequ
Externí odkaz:
http://arxiv.org/abs/2208.07692
Autor:
Bernardini, Matheus, Melo, Patrick
Publikováno v:
Involve 16 (2023) 313-319
In this paper, we provide a generalization of a theorem proved by Eliahou and Fromentin, which exhibit a remarkable property of the sequence $(n'_g)$, where $n'_g$ denotes the number of gapsets with genus $g$ and depth at most $3$.
Comment: 6 pa
Comment: 6 pa
Externí odkaz:
http://arxiv.org/abs/2202.07694
In this paper we introduce the concept of corner element of a generalized numerical semigroup, which extends in a sense the idea of conductor of a numerical semigroup to generalized numerical semigroups in higher dimensions. We present properties of
Externí odkaz:
http://arxiv.org/abs/2201.06403
In this paper, we study gapsets and we focus on obtaining information on how the maximum distance between to consecutive elements influences the behaviour of the set. In particular, we prove that the cardinality of the set of gapsets with genus $g$ s
Externí odkaz:
http://arxiv.org/abs/2106.13296
Autor:
Bernardini, Matheus
We contruct a one-to-one correspondence between a subset of numerical semigroups with genus $g$ and $\gamma$ even gaps and the integer points of a rational polytope. In particular, we give an overview to apply this correspondence to try to decide if
Externí odkaz:
http://arxiv.org/abs/1906.07310
Autor:
Bernardini, Matheus, Torres, Fernando
Let $n_g$ be the number of numerical semigroups of genus $g$. We present an approach to compute $n_g$ by using even gaps, and the question: Is it true that $n_{g+1}>n_g$? is investigated. Let $N_\gamma(g)$ be the number of numerical semigroups of gen
Externí odkaz:
http://arxiv.org/abs/1612.01212
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bernardini, Matheus, Torres, Fernando
Publikováno v:
In Discrete Mathematics December 2017 340(12):2853-2863