Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Bernard Hanouzet"'
Publikováno v:
Communications in Mathematical Sciences. 9:1-31
The electromagnetic wave propagation in a nonlinear medium can be described by a Kerr model in the case of an instantaneous response of the material, or by a Kerr-Debye model if the material exhibits a finite response time. Both models are quasilinea
Publikováno v:
Journal of Differential Equations
Journal of Differential Equations, Elsevier, 2009, 246, pp.291-319
Journal of Differential Equations, Elsevier, 2009, 246 (1), pp.291--319
Journal of differential equations
246 (2009): 291–319. doi:10.1016/j.jde.2008.05.015
info:cnr-pdr/source/autori:Carbou G.; Hanouzet B.; Natalini R./titolo:Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation/doi:10.1016%2Fj.jde.2008.05.015/rivista:Journal of differential equations (Print)/anno:2009/pagina_da:291/pagina_a:319/intervallo_pagine:291–319/volume:246
(2008).
info:cnr-pdr/source/autori:Carbou G., Hanouzet B., Natalini R./titolo:Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation/doi:/rivista:Journal of differential equations (Print)/anno:2008/pagina_da:/pagina_a:/intervallo_pagine:/volume
Journal of Differential Equations, Elsevier, 2009, 246, pp.291-319
Journal of Differential Equations, Elsevier, 2009, 246 (1), pp.291--319
Journal of differential equations
246 (2009): 291–319. doi:10.1016/j.jde.2008.05.015
info:cnr-pdr/source/autori:Carbou G.; Hanouzet B.; Natalini R./titolo:Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation/doi:10.1016%2Fj.jde.2008.05.015/rivista:Journal of differential equations (Print)/anno:2009/pagina_da:291/pagina_a:319/intervallo_pagine:291–319/volume:246
(2008).
info:cnr-pdr/source/autori:Carbou G., Hanouzet B., Natalini R./titolo:Semilinear behavior for totally linearly degenerate hyperbolic systems with relaxation/doi:/rivista:Journal of differential equations (Print)/anno:2008/pagina_da:/pagina_a:/intervallo_pagine:/volume
International audience; We investigate totally linearly degenerate hyperbolic systems with relaxation. We aim to study their semilinear behavior, which means that the local smooth solutions cannot develop shocks, and the global existence is controlle
Autor:
Bernard Hanouzet, Gilles Carbou
Publikováno v:
Comptes Rendus Mathematique. 343:243-247
The monodimensional Kerr Debye model is a quasilinear hyperbolic system with source term. For the Cauchy problem and for the initial-boundary value problem, we prove that it does not exhibit shock waves: if the gradient of a solution blows up, the so
Autor:
Roberto Natalini, Bernard Hanouzet
Publikováno v:
Archive for Rational Mechanics and Analysis. 169:89-117
We consider the Cauchy problem for a general one-dimensional n×n hyperbolic symmetrizable system of balance laws. It is well known that, in many physical examples, for instance for the isentropic Euler system with damping, the dissipation due to the
Autor:
Bernard Hanouzet, Philippe Huynh
Publikováno v:
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 330:193-198
Resume Deux systemes d'equations de Maxwell non lineaires sont envisages : le modele de Kerr modelisant une reponse instantanee du milieu, le modele de Kerr–Debye qui presente un temps de retard et apparait comme une approximation par relaxation du
Publikováno v:
Journal of Differential Equations. 125:1-26
We study the blow up or global existence of the solutions of the Cauchy problem for 2×2 one-dimensional first order semilinear strictly hyperbolic systems with homogeneous quadratic interaction. Two characterizations are obtained: global existence f
Publikováno v:
Hyperbolic Problems: Theory, Numerics, Applications ISBN: 9783540757115
Hyperbolic Problems: Theory, Numerics, Applications
Hyperbolic Problems: Theory, Numerics, Applications, Jul 2006, Lyon, France. pp.59-73
Hyperbolic Problems: Theory, Numerics, Applications
Hyperbolic Problems: Theory, Numerics, Applications, Jul 2006, Lyon, France. pp.59-73
International audience; In this talk we shall review some recent results about qualitative behavior of smooth solutions to the Cauchy problem for general hyperbolic m-dimensional partially dissipative systems of balance laws with a convex entropy.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::08fdbed4f094f9c30b58f62497cd3143
http://hdl.handle.net/20.500.12278/116669
http://hdl.handle.net/20.500.12278/116669
Autor:
Bernard Hanouzet, Gilles Carbou
Publikováno v:
Communications in Mathematical Sciences
Communications in Mathematical Sciences, International Press, 2007, 5 (1), pp.187-203
Commun. Math. Sci. 5, iss. 1 (2007), 187-203
Communications in Mathematical Sciences, International Press, 2007, 5 (1), pp.187-203
Commun. Math. Sci. 5, iss. 1 (2007), 187-203
International audience; We consider the Suliciu model which is a relaxation approximation of the $p$-system. In the case of the Dirichlet boundary condition we prove that the local smooth solution of the $p$-system is the zero limit of the Suliciu mo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a80e892cfdcbac24f40bddf5d05cf148
https://hal.archives-ouvertes.fr/hal-00196163
https://hal.archives-ouvertes.fr/hal-00196163
Publikováno v:
Communications on Pure and Applied Mathematics
Communications on Pure and Applied Mathematics, Wiley, 2007, 60 (11), pp.1559-1622
Communications on pure and applied mathematics
60 (2007): 1559–1662. doi:10.1002/cpa.20195
info:cnr-pdr/source/autori:Bianchini S.; Hanouzet B.; Natalini R./titolo:Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy/doi:10.1002%2Fcpa.20195/rivista:Communications on pure and applied mathematics (Print)/anno:2007/pagina_da:1559/pagina_a:1662/intervallo_pagine:1559–1662/volume:60
Communications on Pure and Applied Mathematics, Wiley, 2007, 60 (11), pp.1559-1622
Communications on pure and applied mathematics
60 (2007): 1559–1662. doi:10.1002/cpa.20195
info:cnr-pdr/source/autori:Bianchini S.; Hanouzet B.; Natalini R./titolo:Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy/doi:10.1002%2Fcpa.20195/rivista:Communications on pure and applied mathematics (Print)/anno:2007/pagina_da:1559/pagina_a:1662/intervallo_pagine:1559–1662/volume:60
International audience; We study the asymptotic time behavior of global smooth solutions to general entropy dissipative hyperbolic systems of balance law in m space dimensions, under the Shizuta-Kawashima condition. We show that these solutions appro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f41e5f44c8822076d192e3cf30d524d0
http://hdl.handle.net/20.500.12278/116706
http://hdl.handle.net/20.500.12278/116706
We study the limiting behavior of solutions to a simple model for combustion waves when the reaction rate tends to infinity. First we establish strong convergence for locally uniformly bounded sequences of solutions. Next we show the uniform boundedn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b7efe06ee584dbf93f6c9e0a4cf97b71
http://hdl.handle.net/11573/2140
http://hdl.handle.net/11573/2140