Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Bernard Bercu"'
Autor:
Bernard Bercu
Publikováno v:
Journal of Statistical Physics. 189
The aim of this paper is to investigate the asymptotic behavior of the so-called elephant random walk with stops (ERWS). In contrast with the standard elephant random walk, the elephant is allowed to be lazy by staying on his own position. We prove t
Autor:
Bernard Bercu, Wlodzimierz Bryc
Publikováno v:
Electronic Communications in Probability. 27
Autor:
Bernard Bercu, Lucile Laulin
We introduce an original way to estimate the memory parameter of the elephant random walk, a fascinating discrete time random walk on integers having a complete memory of its entire history. Our estimator is nothing more than a quasi-maximum likeliho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db2809a9c792bb00baef10cb29af824d
http://arxiv.org/abs/2112.10405
http://arxiv.org/abs/2112.10405
Autor:
Bernard Bercu, Victor Vazquez
Publikováno v:
Journal of Physics A: Mathematical and Theoretical. 55:415001
The aim of this paper is to go further in the analysis of the asymptotic behavior of the so-called minimal random walk (MRW) using a new martingale approach. The MRW is a discrete-time random walk with infinite memory that has three regimes depending
Autor:
Jérémie Bigot, Bernard Bercu
Publikováno v:
Annals of Statistics
Annals of Statistics, Institute of Mathematical Statistics, In press
Annals of Statistics, Institute of Mathematical Statistics, 2021, 49 (2), pp.968-987. ⟨10.1214/20-AOS1987⟩
Annals of Statistics, Institute of Mathematical Statistics, In press
Annals of Statistics, Institute of Mathematical Statistics, 2021, 49 (2), pp.968-987. ⟨10.1214/20-AOS1987⟩
International audience; This paper is devoted to the stochastic approximation of entropically regularized Wasserstein distances between two probability measures, also known as Sinkhorn divergences. The semi-dual formulation of such regularized optima
Autor:
Fabien Montégut, Bernard Bercu
Publikováno v:
Journal of Mathematical Physics
Journal of Mathematical Physics, American Institute of Physics (AIP), In press
Journal of Mathematical Physics, In press
Journal of Mathematical Physics, American Institute of Physics (AIP), In press
Journal of Mathematical Physics, In press
The purpose of this paper is to investigate the asymptotic behavior of random walks on three-dimensional crystal structures. We focus our attention on the 1h structure of the ice and the 2h structure of graphite. We establish the strong law of large
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cdfb61e5d4e021d979ec1288add020c1
https://hal.archives-ouvertes.fr/hal-03347046/file/Asymptotic_analysis_for_random_walks_in_Ice_and_Graphite.pdf
https://hal.archives-ouvertes.fr/hal-03347046/file/Asymptotic_analysis_for_random_walks_in_Ice_and_Graphite.pdf
Publikováno v:
SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2020, 58 (1), pp.348-367. ⟨10.1137/19M1261717⟩
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2020, 58 (1), pp.348-367. ⟨10.1137/19M1261717⟩
Logistic regression is a well-known statistical model which is commonly used in the situation where the output is a binary random variable. It has a wide range of applications including machine learning, public health, social sciences, ecology and ec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f06403d66061c0a858dd3aef7949663b
https://hal.archives-ouvertes.fr/hal-02488985
https://hal.archives-ouvertes.fr/hal-02488985
Autor:
Lucile Laulin, Bernard Bercu
Publikováno v:
Journal of Statistical Physics
Journal of Statistical Physics, Springer Verlag, 2019, 175 (6), pp.1146-1163. ⟨10.1007/s10955-019-02282-8⟩
Journal of Statistical Physics, Springer Verlag, 2019, 175 (6), pp.1146-1163. ⟨10.1007/s10955-019-02282-8⟩
The purpose of this paper is to investigate the asymptotic behavior of the multi-dimensional elephant random walk (MERW). It is a non-Markovian random walk which has a complete memory of its entire history. A wide range of literature is available on
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b78b0aa4c0d7b5207f18b9d143653ddf
https://hal.archives-ouvertes.fr/hal-02489048
https://hal.archives-ouvertes.fr/hal-02489048
Publikováno v:
Statistical Inference for Stochastic Processes
Statistical Inference for Stochastic Processes, 2017, ⟨10.1007/s11203-017-9169-1⟩
Statistical Inference for Stochastic Processes, Springer Verlag, 2019, 22 (1), pp.17-40
Statistical Inference for Stochastic Processes, Springer Verlag, 2019
Statistical Inference for Stochastic Processes, Springer Verlag, 2019, 22 (1), pp.17-40. ⟨10.1007/s11203-017-9169-1⟩
Statistical Inference for Stochastic Processes, 2017, ⟨10.1007/s11203-017-9169-1⟩
Statistical Inference for Stochastic Processes, Springer Verlag, 2019, 22 (1), pp.17-40
Statistical Inference for Stochastic Processes, Springer Verlag, 2019
Statistical Inference for Stochastic Processes, Springer Verlag, 2019, 22 (1), pp.17-40. ⟨10.1007/s11203-017-9169-1⟩
International audience; This paper is devoted to the nonparametric estimation of the derivative of the regression function in a nonparametric regression model. We implement a very efficient and easy to handle statistical procedure based on the deriva
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ff4d2381c597fb06214985b21623939d
https://hal.archives-ouvertes.fr/hal-02470351
https://hal.archives-ouvertes.fr/hal-02470351
Publikováno v:
Journal of Applied Statistics, Vol. 46, No 1 (2019) pp. 119-140
Journal of Applied Statistics
Journal of Applied Statistics, Taylor & Francis (Routledge), 2018, 46 (1), pp.119-140. ⟨10.1080/02664763.2018.1458824⟩
Journal of Applied Statistics, Taylor & Francis (Routledge), 2019, 46 (1), pp.119-140
Journal of Applied Statistics, 2019
Journal of Applied Statistics
Journal of Applied Statistics, Taylor & Francis (Routledge), 2018, 46 (1), pp.119-140. ⟨10.1080/02664763.2018.1458824⟩
Journal of Applied Statistics, Taylor & Francis (Routledge), 2019, 46 (1), pp.119-140
Journal of Applied Statistics, 2019
International audience; This paper is devoted to the estimation of the derivative of the regres- sion function in fixed-design nonparametric regression. We establish the almost sure convergence as well as the asymptotic normality of our estimate. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3647aa79aa538fd5706c2a768051d12a
https://hal.archives-ouvertes.fr/hal-03333444
https://hal.archives-ouvertes.fr/hal-03333444