Zobrazeno 1 - 10
of 136
pro vyhledávání: '"Bering, K."'
Autor:
Bering, K.
Publikováno v:
J.Math.Phys.49:043516,2008
We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator \Delta_E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order d
Externí odkaz:
http://arxiv.org/abs/0705.3440
Autor:
Batalin, I. A., Bering, K.
Publikováno v:
Nucl.Phys.B771:190-233,2007
We show that it is possible to formulate the most general first-class gauge algebra of the operator formalism by only using BRST-invariant constraints. In particular, we extend a previous construction for irreducible gauge algebras to the reducible c
Externí odkaz:
http://arxiv.org/abs/hep-th/0612221
Autor:
Bering, K.
Publikováno v:
J.Math.Phys.47:123513,2006
We revisit Khudaverdian's geometric construction of an odd nilpotent operator \Delta_E that sends semidensities to semidensities on an antisymplectic manifold. We find a local formula for the \Delta_E operator in arbitrary coordinates and we discuss
Externí odkaz:
http://arxiv.org/abs/hep-th/0604117
Autor:
Bering, K.
Publikováno v:
Commun.Math.Phys.274:297-341,2007
We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent \Delta operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algeb
Externí odkaz:
http://arxiv.org/abs/hep-th/0603116
Publikováno v:
Nucl.Phys.B739:389-440,2006
We consider the problem of covariant gauge-fixing in the most general setting of the field-antifield formalism, where the action W and the gauge-fixing part X enter symmetrically and both satisfy the Quantum Master Equation. Analogous to the gauge-ge
Externí odkaz:
http://arxiv.org/abs/hep-th/0512131
Autor:
Aratyn, H., Bering, K.
Publikováno v:
Int.J.Mod.Phys. A20 (2005) 1367-1388
An algebra isomorphism between algebras of matrices and difference operators is used to investigate the discrete integrable hierarchy. We find local and non-local families of R-matrix solutions to the modified Yang-Baxter equation. The three R-theore
Externí odkaz:
http://arxiv.org/abs/nlin/0402014
Autor:
Batalin, I. A., Bering, K.
Publikováno v:
Nucl.Phys.B700:439-462,2004
An action principle that applies uniformly to any number N of supercharges is proposed. We perform the reduction to the N=0 partition function by integrating out superpartner fields. As a new feature for theories of extended supersymmetry, the canoni
Externí odkaz:
http://arxiv.org/abs/hep-th/0401169
Autor:
Bering, K.
1) We identify new parameter branches for the ultra-local boundary Poisson bracket in d spatial dimension with a (d-1)-dimensional spatial boundary. There exist 2^{r(r-1)/2} r-dimensional parameter branches for each d-box, r-row Young tableau. The al
Externí odkaz:
http://arxiv.org/abs/hep-th/0102136
Autor:
Bering, K.
We consider the Hamiltonian treatment of non-local theories and Ostrogradski's formalism. This has recently also been discussed by Woodard (hep-th/0006207) and by Gomis, Kamimura and Llosa (hep-th/0006235). In our approach we recast the second class
Externí odkaz:
http://arxiv.org/abs/hep-th/0007192
Autor:
Bering, K.
Publikováno v:
Phys.Lett. B486 (2000) 426-430
We find a new d-parameter family of ultra-local boundary Poisson brackets that satisfy the Jacobi identity. The two already known cases (hep-th/9305133, hep-th/9806249 and hep-th/9901112) of ultra-local boundary Poisson brackets are included in this
Externí odkaz:
http://arxiv.org/abs/hep-th/9912017