Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Berghout, Mohamed"'
In this article, we show some density properties of smooth and compactly supported functions in fractional Musielak-Sobolev spaces essentially extending the results of Fiscella, Servadei, and Valdinoci obtained in the fractional Sobolev setting. The
Externí odkaz:
http://arxiv.org/abs/2407.12191
In this paper, we introduce a new fractional Musielak-Sobolev space $Ws,{\Phi}x,y({\Omega})$ where ${\Omega}$ is an open subset in RN and we show some density properties of smooth and compactly supported functions in this space.
Externí odkaz:
http://arxiv.org/abs/2403.12305
Let $G$ be an Orlicz function and let $ \alpha, \beta, s$ be positive real numbers. Under certain conditions on the Orlicz function $ G $, we establish some continuous embeddings results between the fractional order Orlicz-Sobolev spaces defined on m
Externí odkaz:
http://arxiv.org/abs/2305.00878
Autor:
Berghout, Mohamed
We introduce and study fractional variable exponents Sobolev trace spaces on any open set in the Euclidean space equipped with the Lebesgue measure. We show that every equivalence class of Sobolev functions has a quasicontinuous representatives. We u
Externí odkaz:
http://arxiv.org/abs/2008.11030
Variable exponent Sobolev trace spaces and Dirichlet problem in axiomatic nonlinear potential theory
Autor:
Berghout, Mohamed
We give a news characterization of variable exponent Sobolev trace spaces. We construct The Perron-Weiner-Brelot operator in nonlinear harmonic space and we give sufficient condition for which this operator is injective.
Externí odkaz:
http://arxiv.org/abs/2008.00557
Autor:
Baalal, Azeddine, Berghout, Mohamed
In this paper we develop a capacities theory connected with the fractional Sobolev spaces with variable exponents. Two kinds of capacities are studied: Sobolev capacity and relative capacity. Basic properties of capacities, including monotonicity, ou
Externí odkaz:
http://arxiv.org/abs/1904.08997
Autor:
Berghout Mohamed
Publikováno v:
Moroccan Journal of Pure and Applied Analysis, Vol 8, Iss 3, Pp 286-298 (2022)
Let Ω ⊂ ℝn be an open set. We give a new characterization of zero trace functions f∈𝒞(Ω¯)∩W01,p(.)(Ω)f \in \mathcal{C}\left( {\bar \Omega } \right) \cap W_0^{1,p\left( . \right)}\left( \Omega \right). If in addition Ω is bounded, then
Externí odkaz:
https://doaj.org/article/f8be967a791e42d5a3c3c85aede522aa
Autor:
Baalal, Azeddine, Berghout, Mohamed
Publikováno v:
International Journal of Mathematical Analysis - Vol. 12, 2018, no. 2, 85 - 98
We show that, under certain regularity assumptions, there exists a linear extension operator.
Externí odkaz:
http://arxiv.org/abs/1707.07741
Autor:
Baalal, Azeddine, Berghout, Mohamed
Let $\Omega $ be a bounded domain in $\mathbb{R}^{d}$ $\left( d\geq 2\right) $ pretty regular. We solve the variational Dirichlet problem for a class of quasi-linear elliptic systems.
Externí odkaz:
http://arxiv.org/abs/1610.05511
Autor:
Berghout, Mohamed
Publikováno v:
Journal of Elliptic & Parabolic Equations; Jun2023, Vol. 9 Issue 1, p565-594, 30p