Zobrazeno 1 - 10
of 302
pro vyhledávání: '"Berg Bernd"'
Autor:
Berg, Bernd Albert
Exercises with solutions are presented which should allow advanced undergraduate students to understand properties of a flat, uniformly expanding space. No knowledge of general or special relativity is needed besides that the speed of light $c$ is a
Externí odkaz:
http://arxiv.org/abs/2401.17453
Autor:
Berg Bernd, Clarke David
Publikováno v:
EPJ Web of Conferences, Vol 175, p 10007 (2018)
We investigate the approach of pure SU(2) lattice gauge theory with theWilson action to its continuum limit using the deconfining transition, Lüscher’s gradient flow [1], and the cooling flow [2, 3] to set the scale. Of those, the cooling flow tur
Externí odkaz:
https://doaj.org/article/95a39ee8e9e443cca4ba9641c9b95c09
Autor:
Berg, Bernd Albert
A simple 3-parameter random walk model for monthly fluctuations $\triangle T$ of a temperature $T$ is introduced. Applied to a time range of 170 years, temperature fluctuations of the model produce for about 14\% of the runs warming that exceeds the
Externí odkaz:
http://arxiv.org/abs/2002.00262
Autor:
Berg, Bernd A., Clarke, David A.
Publikováno v:
Phys. Rev. D 97, 054506 (2018)
Using Monte Carlo simulations with overrelaxation, we have equilibrated lattices up to $\beta=2.928$, size $60^4$, for pure SU(2) lattice gauge theory with the Wilson action. We calculate topological charges with the standard cooling method and find
Externí odkaz:
http://arxiv.org/abs/1710.09474
Autor:
Berg, Bernd A., Clarke, David
Publikováno v:
EPJ Web Conf. 175 (2018) 10007
We investigate the approach of pure SU(2) lattice gauge theory with the Wilson action to its continuum limit using the deconfining transition, Luescher's gradient flow, and the cooling flow to set the scale. Of those, the cooling flow turns out to be
Externí odkaz:
http://arxiv.org/abs/1708.08408
Autor:
Berg, Bernd A., Clarke, David A.
Publikováno v:
Phys. Rev. D 95, 094508 (2017)
We investigate the approach of pure SU(2) lattice gauge theory with the Wilson action to its continuum limit using the deconfining phase transition, the gradient flow and the cooling flow to set the scale. For the gradient and cooling scales we explo
Externí odkaz:
http://arxiv.org/abs/1612.07347
A brief history of the introduction of generalized ensembles to Markov chain Monte Carlo simulations
Autor:
Berg, Bernd A
The most efficient weights for Markov chain Monte Carlo calculations of physical observables are not necessarily those of the canonical ensemble. Generalized ensembles, which do not exist in nature but can be simulated on computers, lead often to a m
Externí odkaz:
http://arxiv.org/abs/1612.04270
Autor:
Berg, Bernd A.
Publikováno v:
Phys. Rev. D 92, 054501 (2015)
Recently the Yang-Mills gradient flow of pure SU(3) lattice gauge theory has been calculated in the range from $\beta=6/g_0^2=6.3$ to~7.5 (Asakawa et al.), where $g_0^2$ is the bare coupling constant of the SU(3) Wilson action. Estimates of the decon
Externí odkaz:
http://arxiv.org/abs/1507.05555