Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Benkirane, Abdelmoujib"'
In this paper, we develop some properties of the $a_{x,y}(.)$-Neumann derivative for the fractional $a_{x,y}(.)$-Laplacian operator. Therefore we prove the basic proprieties of the correspondent function spaces. In the second part of this paper, by m
Externí odkaz:
http://arxiv.org/abs/2203.01756
In this paper, we are concerned with some qualitative properties of the new fractional Musielak-Sobolev spaces $W^sL_{\varPhi_{x,y}}$ such that the generalized Poincar\'e type inequality and some continuous and compact embedding theorems of these spa
Externí odkaz:
http://arxiv.org/abs/2007.11043
Existence results for doubly nonlinear parabolic equations with two lower order terms and $L^1$-data
Publikováno v:
Ukrainian Mathematical Journal 2019
We investigate the existence of a renormalized solution for a class of nonlinear parabolic equations with two lower order terms and $L^1$-data.
Externí odkaz:
http://arxiv.org/abs/1910.12140
In this paper, we investigate the existence of weak solution for a fractional type problems driven by a nonlocal operator of elliptic type in a fractional Orlicz-Sobolev space, with homogeneous Dirichlet boundary conditions. We first extend the fract
Externí odkaz:
http://arxiv.org/abs/1908.07806
In this paper, we extend the fractional Sobolev spaces with variable exponents $W^{s,p(x,y)}$ to include the general fractional case $W^{K,p(x,y)}$, where $p$ is a variable exponent, $s\in (0,1)$ and $K$ is a suitable kernel. We are concerned with so
Externí odkaz:
http://arxiv.org/abs/1901.05687
In this paper, we investigate the existence of weak solution for a Kirchhoff type problem driven by a nonlocal operator of elliptic type in a fractional Orlicz-Sobolev space, with homogeneous Dirichlet boundary conditions {\small$$ (D_{K,A}) \hspace*
Externí odkaz:
http://arxiv.org/abs/1901.05216
In this paper, we define the fractional Orlicz-Sobolev spaces, and we prove some important results of these spaces. The main result is to show the continuous and compact embedding for these spaces. As an application, we prove the existence and unique
Externí odkaz:
http://arxiv.org/abs/1807.11753
We prove in this paper the existence of solutions of nonlinear parabolic problems in inhomogeneous Musielak Orlicz Sobolev spaces, we assume neither a $\Delta_2$ nor $\nabla_2$ on the Musielak function $\varphi$. The main contribution of our work is
Externí odkaz:
http://arxiv.org/abs/1712.08252
Publikováno v:
Rendiconti del Circolo Matematico di Palermo (Series 2); Apr2024, Vol. 73 Issue 3, p1241-1254, 14p
Autor:
Bourahma, Mohamed1 (AUTHOR) mohamedbourahma@gmail.com, Benkirane, Abdelmoujib1 (AUTHOR), Bennouna, Jaouad1 (AUTHOR)
Publikováno v:
Bulletin of the Iranian Mathematical Society. Apr2022, Vol. 48 Issue 2, p587-612. 26p.