Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Benjamin Matschke"'
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AO,..., Iss Proceedings (2011)
Any continuous map of an $N$-dimensional simplex $Δ _N$ with colored vertices to a $d$-dimensional manifold $M$ must map $r$ points from disjoint rainbow faces of $Δ _N$ to the same point in $M$, assuming that $N≥(r-1)(d+1)$, no $r$ vertices of $
Externí odkaz:
https://doaj.org/article/a365668d622e488dadc5c497565191c5
Autor:
Rafael von Känel, Benjamin Matschke
Publikováno v:
Memoirs of the American Mathematical Society. 286
In the first part we construct algorithms (over Q \mathbb {Q} ) which we apply to solve S S -unit, Mordell, cubic Thue, cubic Thue–Mahler and generalized Ramanujan–Nagell equations. As a byproduct we obtain alternative practical approaches for va
Quadratic Fields Admitting Elliptic Curves with Rational $j$-Invariant and Good Reduction Everywhere
Clemm and Trebat-Leder (2014) proved that the number of quadratic number fields with absolute discriminant bounded by $x$ over which there exist elliptic curves with good reduction everywhere and rational $j$-invariant is $\gg x\log^{-1/2}(x)$. In th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::15171b8520990f22de759a51cd54bf9e
http://arxiv.org/abs/2103.09814
http://arxiv.org/abs/2103.09814
Autor:
Alex J. Best, Benjamin Matschke
Publikováno v:
Arithmetic Geometry, Number Theory, and Computation ISBN: 9783030809133
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d8bdc103c32e52d0dccf182184c9b181
https://doi.org/10.1007/978-3-030-80914-0_5
https://doi.org/10.1007/978-3-030-80914-0_5
Publikováno v:
Algebra and number theory
We describe an algorithm for computing integral points on the modular curve of prime level p associated to the normalizer of a non-split Cartan subgroup of GL_2(F_p). Using our method, we show that for 7
Comment: To appear in Algebra and Number
Comment: To appear in Algebra and Number
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::641f5ddc1a636ded55f9e43605e7be54
https://hdl.handle.net/21.11116/0000-0008-B611-721.11116/0000-000A-EC9D-C
https://hdl.handle.net/21.11116/0000-0008-B611-721.11116/0000-000A-EC9D-C
Autor:
Benjamin Matschke
We classify the set of quadrilaterals that can be inscribed in convex Jordan curves, in the continuous as well as in the smooth case. This answers a question of Makeev in the special case of convex curves. The difficulty of this problem comes from th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8147ae50f409889e739f59920b26b1fa
http://arxiv.org/abs/1801.01945
http://arxiv.org/abs/1801.01945
Autor:
Benjamin Matschke, Roman Karasev
Publikováno v:
Discrete & Computational Geometry
We present projective versions of the center point theorem and Tverberg's theorem, interpolating between the original and the so-called "dual" center point and Tverberg theorems. Furthermore we give a common generalization of these and many other kno
Autor:
Benjamin Matschke
Publikováno v:
Notices of the American Mathematical Society
This is a short survey article on the 102 years old Square Peg Problem of Toeplitz, which is also called the Inscribed Square Problem. It asks whether every continuous simple closed curve in the plane contains the four vertices of a square. This arti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::21418ea916d90a18f33d1d4e8ac97f3c
https://hdl.handle.net/21.11116/0000-0004-15B8-521.11116/0000-0004-15BA-3
https://hdl.handle.net/21.11116/0000-0004-15B8-521.11116/0000-0004-15BA-3