Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Benjamin Kelényi"'
Autor:
Benjamin Kelenyi, Levente Tamas
Publikováno v:
IEEE Access, Vol 11, Pp 7947-7958 (2023)
Point-cloud processing for extracting geometric features is difficult due to the highly non-linear rotation variance and measurement noise corrupting the data. To address these challenges, we propose a new architecture, called Dense 3D Geometric Feat
Externí odkaz:
https://doaj.org/article/7ff5b6e51d264b0991830e5a0c448db8
Publikováno v:
Sensors, Vol 21, Iss 18, p 6257 (2021)
In this paper, an efficient normal estimation and filtering method for depth images acquired by Time-of-Flight (ToF) cameras is proposed. The method is based on a common feature pyramid networks (FPN) architecture. The normal estimation method is cal
Externí odkaz:
https://doaj.org/article/7960f61fcbad4d6187c77b3e340a45d2
Publikováno v:
Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
Autor:
Marian-Leontin Pop, Benjamin Kelényi, Andrei Cozma, Levente Tamas, Alexandru Pop, Szilárd Molnár
Publikováno v:
Proceedings of the Python in Science Conference.