Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Benjamin Enriquez"'
Autor:
Benjamin Enriquez, Fabio Gavarini
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 2, p 080 (2006)
We prove that the logarithm of a group-like element in a free algebra coincides with its image by a certain linear map. We use this result and the formula of Le and Murakami for the Knizhnik-Zamolodchikov (KZ) associator Φ to derive a formula for lo
Externí odkaz:
https://doaj.org/article/b48b691dd8ef45bb905e5abf30364dbf
Autor:
Benjamin Enriquez
Publikováno v:
Bulletin de la Société mathématique de France. 144:395-427
Autor:
Benjamin Enriquez, Hidekazu Furusho
This paper is the first in a series which aims at: (a) giving a proof that the associator relations between multizeta values imply the double shuffle and regularization (DSR) ones, alternative to that of the second-named author's 2010 paper; (b) enha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::787abf528b04fa642306bf774b41e8d4
Autor:
Benjamin Enriquez
Publikováno v:
Advances in Mathematics. 252:204-226
We construct an explicit bundle with flat connection on the configuration space of n points on a complex curve. This enables one to recover the ‘1-formality’ isomorphism between the Lie algebra of the prounipotent completion of the pure braid gro
Autor:
Hidekazu Furusho, Benjamin Enriquez
According to Racinet's work, the scheme of double shuffle and regularization relations between cyclotomic analogues of multiple zeta values has the structure of a torsor over a pro-unipotent $\mathbb Q$-algebraic group $\sf{DMR}_0$, which is an algeb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b822310abb2d650f7e045d2af7459990
Autor:
Benjamin Enriquez, Hidekazu Furusho
Publikováno v:
Journal of Pure and Applied Algebra. 216:982-995
This paper is on the elimination of defining equations of the cyclotomic analogues, introduced by the first-named author, of Drinfeld’s scheme of associators [7] . We show that the mixed pentagon equation implies the octagon equation for N = 2 and
Publikováno v:
Publications mathématiques de l'IHÉS. 112:143-189
The Kashiwara–Vergne (KV) conjecture states the existence of solutions of a pair of equations related with the Campbell–Baker–Hausdorff series. It was solved by Meinrenken and the first author over ℝ, and in a formal version, by two of the au
Autor:
Benjamin Enriquez, Nathan Geer
Publikováno v:
Selecta Mathematica. 15:1-59
We study the behavior of the Etingof–Kazhdan quantization functors under the natural duality operations of Lie bialgebras and Hopf algebras. In particular, we prove that these functors are “compatible with duality”, i.e., they commute with the
Publikováno v:
Quantum Groups. :135-175
Publikováno v:
Journal of Algebra
Journal of Algebra, Elsevier, 2006, 305 (2), pp.742-764
Journal of Algebra, Elsevier, 2006, 305 (2), pp.742-764. ⟨10.1016/j.jalgebra.2005.12.006⟩
Bartholdi, Laurent; Enriquez, Benjamin; Etingof, Pavel; & Rains, Eric. (2005). Groups and Lie algebras corresponding to the Yang-Baxter equations. J. Algebra 305 (2006), no. 2, 742--764. doi: 10.1016/j.jalgebra.2005.12.006. UC Davis: Department of Mathematics. Retrieved from: http://www.escholarship.org/uc/item/58d7w70j
Journal of Algebra, Elsevier, 2006, 305 (2), pp.742-764
Journal of Algebra, Elsevier, 2006, 305 (2), pp.742-764. ⟨10.1016/j.jalgebra.2005.12.006⟩
Bartholdi, Laurent; Enriquez, Benjamin; Etingof, Pavel; & Rains, Eric. (2005). Groups and Lie algebras corresponding to the Yang-Baxter equations. J. Algebra 305 (2006), no. 2, 742--764. doi: 10.1016/j.jalgebra.2005.12.006. UC Davis: Department of Mathematics. Retrieved from: http://www.escholarship.org/uc/item/58d7w70j
For a positive integer n we introduce quadratic Lie algebras tr_n qtr_n and discrete groups Tr_n, QTr_n naturally associated with the classical and quantum Yang-Baxter equation, respectively. We prove that the universal enveloping algebras of the Lie